Glycosylation changes leading to the increase in size on the common core of N-glycans, required enzymes, and related cancer-associated proteins

Glycan parts of glycoconjugates on the surfaces of cells regulate many kinds of interactions between the cells and their immediate environments. Alterations in glycosylation on the cancer-associated glycoproteins are responsible for changes in their molecular interactions and biological functions. Glycosylation changes occur in the core and/or at the nonreducing end of the oligosaccharide chains of N-glycans. In this review, we focus on the branching of the common core structure of N-glycans, the responsible enzyme, and the extensions of some of the branches causing size increases on the surface of tumor cells. Abnormal branching, elongation of the branches, and increasing size of the common core of N-glycans are the typical features of these changes and are related with malignant transformations. Seven N-acetylglucosaminyltransferases (GnTs) (GnT-I, GnT-II, GnT-III, GnT-IV, GnT-V, GnT-VI, and GnT-IX) and alpha\1,6-fucosyltransferase (FUT8) initiate the new branches on the core. GnT-IV, GnT-V, and GnT-IX initiate the branches available for poly-LacNAc extensions, which are responsible for tumor progression and metastasis. GnT-III prevents the catalytic activity of GnT-II, GnT-IV, GnT-V, and FUT8 to form branching and elongation of the branches. The contributions of GnT-III and the other enzymes to the cancer progression are in conflict with each other. While GnT-III prevents cancer, the others increase metastasis. The function of FUT8 is related to signal transduction and its activity is higher in tumor tissue than in healthy tissue. The impact of glycosylation changes on some of the cancer-associated proteins (growth factor receptors, adhesion and signal molecules, CD147, TIMP-1, and matriptase) is also summarized.

Glycosylation changes leading to the increase in size on the common core of N-glycans, required enzymes, and related cancer-associated proteins

Glycan parts of glycoconjugates on the surfaces of cells regulate many kinds of interactions between the cells and their immediate environments. Alterations in glycosylation on the cancer-associated glycoproteins are responsible for changes in their molecular interactions and biological functions. Glycosylation changes occur in the core and/or at the nonreducing end of the oligosaccharide chains of N-glycans. In this review, we focus on the branching of the common core structure of N-glycans, the responsible enzyme, and the extensions of some of the branches causing size increases on the surface of tumor cells. Abnormal branching, elongation of the branches, and increasing size of the common core of N-glycans are the typical features of these changes and are related with malignant transformations. Seven N-acetylglucosaminyltransferases (GnTs) (GnT-I, GnT-II, GnT-III, GnT-IV, GnT-V, GnT-VI, and GnT-IX) and alpha\1,6-fucosyltransferase (FUT8) initiate the new branches on the core. GnT-IV, GnT-V, and GnT-IX initiate the branches available for poly-LacNAc extensions, which are responsible for tumor progression and metastasis. GnT-III prevents the catalytic activity of GnT-II, GnT-IV, GnT-V, and FUT8 to form branching and elongation of the branches. The contributions of GnT-III and the other enzymes to the cancer progression are in conflict with each other. While GnT-III prevents cancer, the others increase metastasis. The function of FUT8 is related to signal transduction and its activity is higher in tumor tissue than in healthy tissue. The impact of glycosylation changes on some of the cancer-associated proteins (growth factor receptors, adhesion and signal molecules, CD147, TIMP-1, and matriptase) is also summarized.

___

  • Al Moustafa AE, Achkhar A, Yasmeen A (2012). EGF-receptor signaling and epithelial-mesenchymal transition in human carcinomas. Front Biosci 4: 671–684.
  • Antonopoulos A, Demotte N, Stroobant V, Haslam SM, van der Bruggen P, Dell A (2012). Loss of effector function of human cytolytic T lymphocytes is accompanied by major alterations in N- and O-glycosylation. J Biol Chem 287: 11240–11251.
  • Argüeso P, Panjwani N (2011). Focus on molecules: galectin-3. Exp Eye Res 92: 2–3.
  • Bai Y, Huanh W, Ma LT, Jiang JL, Chen ZN (2014). Importance of N-glycosylation on CD147 for its biological functions. Int J Mol Sci 15: 6356–6377.
  • Bassagañas S, Carvalho S, Dias AM, Pérez-Garay M, Ortiz MR, Figueras J, Reis CA, Pinho SS, Peracaula R (2014). Pancreatic cancer cell glycosylation regulates cell adhesion and invasion through the modulation of α2β1 integrin and E-cadherin function. PLoS One 9: e98595.
  • Bayro İ, Deveci R (2006). Galleria mellonella (Lepidoptera)’nın gelişen testislerinde sialik asidin rolü. İzmir, Turkey: Ege Üniversitesi Fen Bilimleri Araştırma Projesi (in Turkish).
  • Benaud CM, Oberst M, Dickson RB, Lin CY (2002). Deregulated activation of matriptase in breast cancer cells. Clin Exp Metastasis 19: 639–649.
  • Bernardi C, Soffientini U, Piacente F, Tonetti MG (2013). Effects of microRNAs on fucosyltransferase 8 (FUT8) expression in hepatocarcinoma cells. PLoS One 8: e76540.
  • Borzym-Kluczyk M, Radziejewska I, Darewicz B (2012). Glycosylation of proteins in healthy and pathological human renal tissues. Folia Histochem Cytobiol 50: 599–604.
  • Brockhausen I, Narasimhan S, Schachter H (1988). The biosynthesis of highly branched N-glycans: studies on the sequential pathway and functional role of N-acetylglucosaminyltransferases I, II, III, IV, V and VI. Biochimie 70: 1521–1533.
  • Brooks SA, Dwek MV, Schumacher U (2002). Functional and Molecular Glycobiology. 1st ed. Oxford, UK: BIOS Scientific Publishers Ltd.
  • Bugge TH, List K, Szabo R (2007). Matriptase-dependent cell surface proteolysis in epithelial development and pathogenesis. Front Biosci 12: 5060–5070.
  • Canis K, McKinnon TA, Nowak A, Haslam SM, Panico M, Morris HR, Laffan MA, Dell A (2012). Mapping the N-glycome of human von Willebrand factor. Biochem J 447: 217–228.
  • Çay T (2012). Immunhistochemical expression of galectin-3 in cancer: a review of the literature. Turk Patoloji Derg 28: 1–10.
  • Chakraborty AK, Pawelek JM (2003). GnT-V, macrophage and cancer metastasis: a common link. Clin Exp Metastasis 20: 365–373.
  • Chen CY, Jan YH, Juan YH, Yang CJ, Huang MS, Yu CJ, Yang PJ, Hsiao M, Hsu TL, Wong CH (2013). Fucosyltransferase 8 as a functional regulator of nonsmall cell lung cancer. P Natl Acad Sci USA 110: 630–635.
  • Chen H, Lam Fok K, Jiang X, Chan HC (2012). New insights into germ cell migration and survival/apoptosis in spermatogenesis: lessons from CD147. Spermatogenesis 2: 264–272.
  • Chen HL, Li CF, Grigorian A, Tian W, Demetriou M (2009). T cell receptor signaling co-regulates multiple Golgi genes to enhance N-glycan branching. J Biol Chem 284: 32454–32461.
  • Chen S, Tan J, Reinhold VN, Spence AM, Schachter H (2002). UDP-N-acetylglucosamine:alpha-3-D-mannoside beta- 1,2-N-acetylglucosaminyltransferase I and UDP-N- acetylglucosamine:alpha-6-D-mannoside beta-1,2-N- acetylglucosaminyltransferase II in Caenorhabditis elegans. Biochim Biophys Acta 1573: 271–279.
  • Chiu CG, Strugnell SS, Griffith OL, Jones SJ, Gown AM, Walker B, Nabi IR, Wiseman SM (2010). Diagnostic utility of galectin-3 in thyroid cancer. Am J Pathol 176: 2067–2081.
  • Christiansen MN, Chik J, Lee L, Anugraham M, Abrahams JL, Packer NH (2014). Cell surface protein glycosylation in cancer. Proteomics 14: 525–546.
  • Chu LL, Xu Y, Yang JR, Hu YA, Chang HH, Lai HY, Tseng CC, Wang HY, Johnson MD, Wang JK et al. (2014). Human cancer cells retain modest levels of enzymatically active matriptase only in extracellular milieu following induction of zymogen activation. PLoS One 9: e92244.
  • Contessa JN, Bhojani MS, Freeze HH, Rehemtulla A, Lawrence TS (2008). Inhibition of N-linked glycosylation disrupts receptor tyrosine kinase signaling in tumor cells. Cancer Res 68: 3803– 3809.
  • Cylwik B, Lipartowska K, Chrostek L, Gruszewska E (2013a). Congenital disorders of glycosylation. Part II. Defects of protein O-glycosylation. Acta Biochim Pol 60: 361–368.
  • Cylwik B, Naklicki M, Chrostek L, Gruszewska E (2013b). Congenital disorders of glycosylation. Part I. Defects of protein N-glycosylation. Acta Biochim Pol 60: 151–161.
  • D’Agostaro GA, Zingoni A, Moritz RL, Simpson RJ, Schachter H, Bendiak B (1995). Molecular cloning and expression of cDNA encoding the rat UDP-N-acetylglucosamine: alpha-6-D- mannoside beta-1,2-N-acetylglucosaminyltransferase II. J Biol Chem 270: 15211–15221.
  • Demetriou M, Nabi IR, Coppoliono M, Dedhar S, Dennis JW (1995). Reduced contact-inhibition and substratum adhesion in epithelial cells expressing GlcNAc-transferase V. J Cell Biol 130: 383–392.
  • Dodla MC, Young A, Venable A, Hasneen K, Rao RR, Machacek DW, Stice SL (2012). Differing lectin binding profiles among human embryonic stem cells and derivatives aid in the isolation of neural progenitor cells. PLoS One 6: e23266.
  • Drake PM, Schilling B, Niles RK, Prakobphol A, Li B, Jung K, Cho W, Braten M, Inerowicz HD, Williams K et al. (2012). Lectin chromatography/mass spectrometry discovery workflow identifies putative biomarkers of aggressive breast cancers. J Proteome Res 11: 2508–2520.
  • Eratak B, Karaçalı S (2006). Galleria mellonella (Lepidoptera)’da metamorfoz geçiren corpus cardiacum corpus allatum (CC- CA) kompleksinde sialik asidin rolü. İzmir, Turkey: Ege Üniversitesi Fen Bilimleri Araştırma Projesi (in Turkish).
  • Eyers SA, Ridgwell K, Mawby WJ, Tanner MJ (1994). Topology and organization of human Rh (rhesus) blood group-related polypeptides. J Biol Chem 269: 6417–6423.
  • Fan JH, Wang SJ, Yu SJ, He JN, Zheng WL, Zhang JN (2012). N-Acetylglucosaminyltransferase IVa regulates metastatic potential of mouse hepatocarcinoma cells through glycosylation of CD147. Glycoconj J 29: 323–334.
  • Feizi T (1981). Antibodies to defined carbohydrate sequences in immunological disorders of man. Med Biol 59: 131–133.
  • Feizi T (1985). Carbohydrate antigens in human cancer. Cancer Surv 4: 245–269.
  • Feizi T (1987). Significance of carbohydrate components of cell surfaces. Ciba Found Symp 129: 43–58.
  • Feizi T (1991). Carbohydrate differentiation antigens: probable ligands for cell adhesion molecules. Trends Biochem Sci 16: 84–86.
  • Fredriksson SA, Podbielska M, Nilsson B, Krotkiewska B, Lisowska E, Krotkiewski H (2010). ABH blood group antigens in N-glycan of human glycophorin A. Arch Biochem Biophys 498: 127–135.
  • Gao L, Shen L, Yu M, Ni J, Dong X, Zhou Y, Wu S (2014). Colon cancer cells treated with 5-fluorouracil exhibit changes in polylactosamine-type N-glycans. Mol Med Rep 9: 1697–1702.
  • Garner OB, Baum LG (2008). Galectin-glycan lattices regulate cell- surface glycoprotein organization and signalling. Biochem Soc Trans 36: 1472–1477.
  • Geng F, Shi BZ, Yuan YF, Wu XZ (2004). The expression of core fucosylated E-cadherin in cancer cells and lung cancer patients: prognostic implications. Cell Res 14: 423–433.
  • Gerber-Lemaire S, Juillerat-Jeanneret L (2010). Studies toward new anti-cancer strategies based on alpha-mannosidase inhibition. Chimia (Aarau) 64: 634–639.
  • Granovsky M, Fata J, Pawling J, Muller WJ, Khokha R, Dennis JW (2000). Suppression of tumor growth and metastasis in Mgat5- deficient mice. Nat Med 6: 306–312.
  • Gray K, Elghadban S, Thongyoo P, Owen KA, Szabo R, Bugge TH, Tate EW, Leatherbarrow RJ, Ellis V (2014). Potent and specific inhibition of the biological activity of the type-II transmembrane serine protease matriptase by the cyclic microprotein MCoTI-II. Thromb Haemost 112: 402–411.
  • Grigorian A, Torossian S, Demetriou M (2009). T-cell growth, cell surface organization, and the galectin-glycoprotein lattice. Immunol Rev 230: 232–246.
  • Groblewska M, Siewko M, Mroczko B, Szmitkowski M (2012). The role of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in the development of esophageal cancer. Folia Histochem Cytobiol 50: 12–19.
  • Grunnet M, Mau-Sİrensen M, Brünner N (2013). Tissue inhibitor of metalloproteinase 1 (TIMP-1) as a biomarker in gastric cancer: a review. Scand J Gastroenterol 48: 899–905.
  • Guo HB, Johnson H, Randolph M, Nagy T, Blalock R, Pierce M (2010). Specific posttranslational modification regulates early events in mammary carcinoma formation. P Natl Acad Sci USA 107: 21116–21121.
  • Guo HB, Randolph M, Pierce M (2007). Inhibition of a specific N-glycosylation activity results in attenuation of breast carcinoma cell invasiveness-related phenotypes: inhibition of epidermal growth factor-induced dephosphorylatıon of focal adhesıon kinase. J Biol Chem 282: 22150–22162.
  • Guo HB, Zhang Y, Chen HL (2001). Relationship between metastasis- associated phenotypes and N-glycan structure of surface glycoproteins in human hepatocarcinoma cells. J Cancer Res Clin Oncol 127: 231–236.
  • Guo P, Wang QY, Guo HB, Shen ZH, Chen HL (2004). N-acetylglucosaminyltransferase V modifies the signaling pathway of epidermal growth factor receptor. Cell Mol Life 61: 1795–1804.
  • Haga Y, Ishii K, Suzuki T (2011). N-glycosylation is critical for the stability and intracellular trafficking of glucose transporter GLUT4. J Biol Chem 286: 31320–31327.
  • Hakomori S (2001). Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti- cancer vaccines. Adv Exp Med Biol 491: 369–402.
  • Häuselmann I, Borsig L (2014). Altered tumor-cell glycosylation promotes metastasis. Front Oncol 4: 1–15.
  • Henion TR, Schwarting GA (2014). N-linked polylactosamine glycan synthesis is regulated by co-expression of β3GnT2 and GCNT2. J Cell Physiol 229: 471–478.
  • Hennet T (2009). How does a medical doctor become a glycobiologist. Biochim Biophys Acta 1792: 824.
  • Hoja-Łukowicz D, Link-Lenczowski P, Carpentieri A, Amoresano A, Pocheć E, Artemenko KA, Bergquist J, Lityńska A (2013). L1CAM from human melanoma carries a novel type of N-glycan with Galβ1-4Galβ1- motif. Involvement of N-linked glycans in migratory and invasive behaviour of melanoma cells. Glycoconj J 30: 205–225.
  • Hollenstein K, Dawson RJ, Locher KP (2007). Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol 17: 412–418.
  • Hua D, Qin F, Shen L, Jiang Z, Zou ST, Xu L, Cheng ZH, Wu SL (2012). β3GnT8 regulates laryngeal carcinoma cell proliferation via targeting MMPs/TIMPs and TGF-β1. Asian Pac J Cancer Prev 13: 2087–2093.
  • Huang B, Sun L, Cao J, Zhang Y, Wu Q, Zhang J, Ge Y, Fu L, Wang Z (2013). Downregulation of the GnT-V gene inhibits metastasis and invasion of BGC823 gastric cancer cells. Oncol Rep 29: 2392–2400.
  • Huang B, Wu Q, Ge Y, Zhang J, Sun L, Zhang Y, Fu L, Fan J, Wang Z (2014). Expression of N-acetylglucosaminyltransferase V in gastric cancer correlates with metastasis and prognosis. Int J Oncol 44: 849–857.
  • Huang W, Luo WJ, Zhu P, Tang J, Yu XL, Cui HY, Wang B, Zhang Y, Jiang JL, Chen ZN (2013). Modulation of CD147- induced matrix metalloproteinase activity: role of CD147 N-glycosylation. Biochem J 449: 437–448.
  • Ide Y, Miyoshi E, Nakagawa T, Gu J, Tanemura M, Nishida T, Ito T, Yamamoto H, Kozutsumi Y, Taniguchi N (2006). Aberrant expression of N-acetylglucosaminyltransferase-IVa and IVb (GnT-IVa and b) in pancreatic cancer. Biochem Biophys Res Commun 341: 478–482.
  • Ihara S, Miyoshi E, Ko JH, Murata K, Nakahara S, Honke K, Dickson RB, Lin CY, Taniguchi N (2002). Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding β1-6 GlcNAc branching. J Biol Chem 277: 16960–16967.
  • Ihara S, Miyoshi E, Nakahara S, Sakiyama H, Ihara H, Akinaga A, Honke K, Dickson RB, Lin CY, Taniguchi N (2004). Addition of β1-6 GlcNAc branching to the oligosaccharide attached to Asn 772 in the serine protease domain of matriptase plays a pivotal role in its stability and resistance against trypsin. Glycobiology 14: 139–146.
  • Inamori K, Endo T, Ide Y, Fujii S, Gu J, Honke K, Taniguchi N (2003). Molecular cloning and characterization of human GnT-IX, a novel beta1,6-N-acetylglucosaminyltransferase that is specifically expressed in the brain. J. Biol Chem 278: 43102– 43109.
  • Irollo E, Pirozzi G (2013). CD133: to be or not to be, is this the real question? Am J Transl Res 5: 563–581.
  • Isaji T, Kariya Y, Xu Q, Fukuda T, Taniguchi N, Gu J (2010). Functional roles of the bisecting GlcNAc in integrin-N-mediated cell adhesion. Methods Enzymol 480: 445–459.
  • Ishida H, Togayachi A, Sakai T, Iwai T, Hiruma T, Sato T, Okubo R, Inaba N, Kudo T, Gotoh M et al. (2005). A novel β1,3-N- acetylglucosaminyltransferase (β3Gn-T8), which synthesizes poly-N-acetyllactosamine, is dramatically upregulated in colon cancer. FEBS Lett 579: 71–78.
  • Ito Y, Akinaga A, Yamanaka K, Nakagawa T, Kondo A, Dickson RB, Lin CY, Miyauchi A, Taniguchi N, Miyoshi E (2006). Co- expression of matriptase and N-acetylglucosaminyltransferase V in thyroid cancer tissues--its possible role in prolonged stability in vivo by aberrant glycosylation. Glycobiology 16: 368–374.
  • Jaeken J (2013). Congenital disorders of glycosylation. Handb Clin Neurol 113: 1737–1743.
  • Kanekiyo K, Inamori K, Kitazume S, Sato K, Maeda J, Higuchi M, Kizuka Y, Korekane H, Matsuo I, Honke K et al. (2013). Loss of branched O-mannosyl glycans in astrocytes accelerates remyelination. J Neurosci 33: 10037–10047.
  • Kaneko M, Alvarez-Manilla G, Kamar M, Lee I, Lee JK, Troupe K, Zhang WJ, Osawa M, Pierce M (2003). A novel β(1,6)-N- acetylglucosaminyltransferase V (GnT-VB). FEBS Lett 554: 515–519.
  • Kang JG, Ko JH, Kim YS (2011). Pros and cons of using aberrant glycosylation as companion biomarkers for therapeutics in cancer. BMB Rep 44: 765–771.
  • Karaçalı S (2003). Glikobiyoloji, Güncel moleküler biyoloji. Turk J Vet Anim 27: 489–495 (in Turkish).
  • Karaçalı S, Deveci R, Pehlivan S, Özcan A (2000). Adhesion of hemocytes to desialylated prothoracic glands of Galleria mellonella (Lepidoptera) in larval stage. Invertebr Reprod Dev 37: 167–170.
  • Karaçalı S, İzzetoğlu S, Deveci R (2011). Kanserde glikozilasyon değişiklikleri. In: Haydaroğlu A, Vatansever S, Kitapçıoğlu G, editors. Meme Kanserinde Moleküler ve Genetik Yaklaşım. 1st ed. İzmir, Turkey: Ege Üniversitesi Yayınları, pp. 45–59.
  • Kariya Y, Kawamura C, Tabei T, Gu J (2010). Bisecting GlcNAc residues on laminin-332 down-regulate galectin-3-dependent keratinocyte motility. J Biol Chem 285: 3330–3340.
  • Katsuda TL, Kosaka N, Ochiya T (2014). The roles of extracellular vesicles in cancer biology: toward the development of novel cancer biomarkers. Proteomics 14: 412–425.
  • Kilpatrick LM, Harris RL, Owen KA, Bass R, Ghorayeb C, Bar-Or A, Ellis V (2006). Initiation of plasminogen activation on the surface of monocytes expressing the type II transmembrane serine protease matriptase. Blood 108: 2616–2623.
  • Kim JI, Lee I, Park S, Park MS (2012). Surface glycoproteins determine the feature of the pandemic H1N1 virus. BMB Rep
  • Kim YS, Hwang SY, Kang HY, Sohn H, Oh S, Kim JY, Yoo JS, Kim YH, Kim CH, Jeon JH et al. (2008). Functional proteomics study reveals that N-acetylglucosaminyltransferase V reinforces the invasive/metastatic potential of colon cancer through aberrant glycosylation on tissue inhibitor of metalloproteinase-1. Mol Cell Proteomics 7: 1–14.
  • Kim YW, Park J, Lee HJ, Lee SY, Kim SJ (2012). TGF-β sensitivity is determined by N-linked glycosylation of the type II TGF-β receptor. Biochem J 445: 403–411.
  • Kimura A, Terao M, Kato A, Hanafusa T, Murota H, Katayama I, Miyoshi E (2012). Upregulation of N-acetylglucosaminyltransferase-V by heparin-binding EGF- like growth factor induces keratinocyte proliferation and epidermal hyperplasia. Exp Dermatol 21: 515–519.
  • Kinoshita M, Mitsui Y, Kakoi N, Yamada K, Hayakawa T, Kakehi K (2014). Common glycoproteins expressing polylactosamine- type glycans on matched patient primary and metastatic melanoma cells show different glycan profiles. J Proteome Res 13: 1021–1033.
  • Kizuka Y, Kitazume S, Okahara K (2014). Epigenetic regulation of a brain-specific glycosyltransferase N-acetylglucosaminyltransferase-IX (GnT-IX) by specific chromatin modifiers. J Biol Chem 289: 11253–11261.
  • Kizuka Y, Kitazume S, Yoshida M, Taniguchi N (2011). Brain-specific expression of N-acetylglucosaminyltransferase IX (GnT-IX) is regulated by epigenetic histone modifications. J Biol Chem 286: 31875–31884.
  • Kok JW, Sietsma H (2004). Sphingolipid metabolism enzymes as targets for anticancer therapy. Curr Drug Targets 5: 375–382.
  • Korekane H, Park JY, Matsumoto A, Nakajima K, Takamatsu S, Ohtsubo K, Miyamoto Y, Hanashima S, Kanekiyo K, Kitazume S et al. (2013). Identification of ectonucleotide phosphatase/phosphodiesterase 3 (ENPP3) as a regulator of N-acetylglucoseaminyltransferase GnT-IX (GnT-Vb). J Biol Chem 288: 27912–27926.
  • Kotthaus J, Steinmetzer T, Kotthaus J, Schade D, van de Locht A, Clement B (2010). Metabolism and distribution of two highly potent and selective peptidomimetic inhibitors of matriptase. Xenobiotica 40: 93–101.
  • Kumar R, Stanley P (1989). Transfection of a human gene that corrects the Lec1 glycosylation defect: evidence for transfer of the structural gene for N-acetylglucosaminyltransferase I. Mol Cell Biol 9: 5713–5717.
  • Kurimoto A, Kitazume S, Kizuka Y, Nakajima K, Oka R, Fujinawa R, Korekane H, Yamaguchi Y, Wada Y, Taniguchi N (2014). The absence of core fucose up-regulates GnT-III and Wnt target genes: a possible mechanism for an adaptive response in terms of glycan function. Biol Chem 289: 11704–11714.
  • Lagana A, Goetz JG, Cheung P, Raz A, Dennis JW, Nabi IR (2006). Galectin binding to Mgat5-modified N-glycans regulates fibronectin matrix remodeling in tumor cells. Mol Cell Biol 26: 3181–3193.
  • Lajoie P, Partridge EA, Guay G, Goetz JG, Pawling J, Lagana A, Joshi B, Dennis JW, Nabi IR (2007). Plasma membrane domain organization regulates EGFR signaling in tumor cells. J Cell Biol 179: 341–356.
  • Lee JH, Kang JG, Song KJ, Jeon SK, Oh S, Kim YS, Ko JH (2013). N-Acetylglucosaminyltransferase V triggers overexpression of MT1-MMP and reinforces the invasive/metastatic potential of cancer cells. Biochem Biophys Res Commun 431: 658–663.
  • Lee SL, Huang PY, Roller P, Cho EG, Park D, Dickson RB (2010). Matriptase/epithin participates in mammary epithelial cell growth and morphogenesis through HGF activation. Mech Dev 127: 82–95.
  • Li M, Song L, Qin X (2010). Glycan changes: cancer metastasis and anti-cancer vaccines. J Biosci 35: 665–673.
  • Li S, Mo C, Peng Q, Kang X, Sun C, Jiang K, Huang L, Lu Y, Sui J, Qin X et al. (2013). Cell surface glycan alterations in epithelial mesenchymal transition process of Huh7 hepatocellular carcinoma cell. PLoS One 8: e71273.
  • List K (2009). Matriptase: a culprit in cancer. Future Oncol 5: 97–104.
  • List K, Bugge TH, Szabo R (2006). Matriptase: potent proteolysis on the cell surface. Mol Med 12: 1–7.
  • Liu J, Shen L, Yang L, Hu S, Xu L, Wu S (2014). High expression of β3GnT8 is associated with the metastatic potential of human glioma. Int J Mol Med 33: 1459–1468.
  • Liu L, Yan B, Huang J, Gu Q, Wang L, Fang M, Jiao J, Yue X (2013). The identification and characterization of novel N-glycan- based biomarkers in gastric cancer. PLoS One 8: e77821.
  • Liu YC, Yen HY, Chen CY, Chen CH, Cheng PF, Juan YH, Chen CH, Khoo KH, Yu CJ, Yang PC et al. (2011). Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. P Natl Acad Sci USA 108: 11332–11337.
  • Loffe E, Stanley P (1994). Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation revealing an essential role for complex or hybrid N-linked carbohydrates. P Natl Acad Sci USA 91: 728–732.
  • Lombardi A, Andreozzi C, Pavone V, Triglione V, Angiolini L, Caccia P (2013). Evaluation of the oligosaccharide composition of commercial follicle stimulating hormone preparations. Electrophoresis 34: 2394–2406.
  • Lu CH, Wu WY, Lai YJ, Yang CM, Yu LC (2014). Suppression of B3GNT7 gene expression in colon adenocarcinoma and its potential effect in the metastasis of colon cancer cells. Glycobiology 24: 359–367.
  • Luo W, Xia T, Xu L, Chen YG, Fang X (2013). Visualization of the post-Golgi vesicle-mediated transportation of TGF-β receptor II by quasi-TIRFM. J Biophotonics (in press).
  • Matsumoto K, Yokote H, Arao T, Maegawa M, Tanaka K, Fujita Y, Shimizu C, Hanafusa T, Fujiwara Y, Nishio K (2008). N-Glycan fucosylation of epidermal growth factor receptor modulates receptor activity and sensitivity to epidermal growth factor receptor tyrosine kinase inhibitor. Cancer 99: 1611–1617.
  • Meany DL, Chan DW (2011). Aberrant glycosylation associated with enzymes as cancer biomarkers. Clin Proteomics 8: 7.
  • Mehta A, Norton P, Liang P, Comunale MA, Wang M, Rodemich- Betesh L, Koszycki A, Noda K, Miyoshi E, Block T (2012). Increased levels of tetra-antennary N-Linked glycan but not core fucosylation are associated with hepatocellular carcinoma tissue. Cancer Epidemiol Biomarkers Prev 21: 925–933.
  • Mi Y, Lin A, Fiete D, Steirer L, Baenziger JU (2014). Modulation of mannose and asialoglycoprotein receptor expression determines glycoprotein hormone half-life at critical points in the reproductive. Cycle J Biol Chem 289: 12157–12167.
  • Mitsui Y, Yamada K, Hara S, Kinoshita M, Hayakawa T, Kakehi K (2012). Comparative studies on glycoproteins expressing polylactosamine-type N-glycans in cancer cells. J Pharm Biomed Anal 70: 718–726.
  • Miwa HE, Song Y, Alvarez R, Cummings RD, Stanley P (2012). The bisecting GlcNAc in cell growth control and tumor progression. Glycoconj J 29: 609–618.
  • Muinelo-Romay L, Vázquez-Martín C, Villar-Portela S, Cuevas E, Gil-Martín E, Fernández-Briera A (2008). Expression and enzyme activity of α(1,6)fucosyltransferase in human colorectal cancer. Int J Cancer 123: 641–646.
  • Nabi IR, Dennis JW (1998). The extent of polylactosamine glycosylation of MDCK LAMP-2 is determined by its Golgi residence time. Glycobiology 8: 947–953.
  • Nairn AV, Aoki K, dela Rosa M, Porterfield M, Lim JM, Kulik M, Pierce JM, Wells L, Dalton S, Tiemeyer M et al. (2012). Regulation of glycan structures in murine embryonic stem cells: combined transcript profiling of glycan-related genes and glycan structural analysis. J Biol Chem 287: 37835–37856.
  • Nakahara S, Saito T, Kondo N, Moriwaki K, Noda K, Ihara S, Takahashi M, Ide Y, Gu J, Inohara H et al. (2006). A secreted type of β1,6 N-acetylglucosaminyltransferase V (GnT-V), a novel angiogenesis inducer, is regulated by γ-secretase. FASEB J 20: 2451–2459.
  • Nangia-Makker P, Balan V, Raz A (2008). Regulation of tumor progression by extracellular galectin-3. Cancer Microenviron 1: 43–51.
  • Ni J, Jiang Z, Shen L, Gao L, Yu M, Xu X, Zou S, Hua D, Wu S (2014). β3GnT8 regulates the metastatic potential of colorectal carcinoma cells by altering the glycosylation of CD147. Oncol Rep 31: 1795–801.
  • Niimi K, Yamamoto E, Fujiwara S, Shinjo K, Kotani T, Umezu T, Kajiyama H, Shibata K, Ino K, Kikkawa F (2012). High expression of N-acetylglucosaminyltransferase IVa promotes invasion of choriocarcinoma. Br J Cancer 107: 1969–1077.
  • North SJ, Huang, HH, Sundaram S, Jang-Lee J, Etienne AT, Trollope A, Chalabi S, Dell A, Stanley P, Haslam SM (2010). Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity. J Biol Chem 285: 5759–5775.
  • Ochwat D, Hoja-Lukowicz D, Litynska A (2004). N-glycoproteins bearing β1–6 branched oligosaccharides from the A375 human melanoma cell line analysed by tandem mass spectrometry. Melanoma Res 14: 479–485.
  • Oguri S, Yoshida A, Minowa MT, Takeuchi M (2006). Kinetic properties and substrate specificities of two recombinant human Glycoconj J 23: 473–80.
  • Ohtsubo K, Takamatsu S, Minowa MT, Yoshida A, Takeuchi M, Marth JD (2005). Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell 123: 1307–1321.
  • Osumi D, Takahashi M, Miyoshi E, Yokoe S, Lee SH, Noda K, Nakamori S, Gu J, Ikeda Y, Kuroki Y et al. (2009). Core fucosylation of E-cadherin enhances cell-cell adhesion in human colon carcinoma WiDr cells. Cancer 100: 888–895.
  • Owen KA, Qiu D, Alves J, Schumacher AM, Kilpatrick LM, Li J, Harris JL, Ellis V (2010). Pericellular activation of hepatocyte growth factor by the transmembrane serine proteases matriptase and hepsin, but not by the membrane-associated protease uPA. Biochem J 426: 219–228.
  • Özkan M, Karaçalı S (2006). Galleria mellonella (Lepidoptera)’da metamorfoz geçiren sinir sisteminde sialik asidin rolü. İzmir, Turkey: Ege Üniversitesi Fen Bilimleri Araştırma Projesi (in Turkish).
  • Padler-Karavani V (2014). Aiming at the sweet side of cancer: aberrant glycosylation as possible target for personalized- medicine. Cancer Lett 352: 102–112.
  • Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M, Nabi IR, Wrana JL, Dennis JW (2004). Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306: 120–124.
  • Peng W, Pranskevich J, Nycholat C, Gilbert M, Wakarchuk W, Paulson JC, Razi N (2012). Helicobacter pylori β1,3-N- acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans. Glycobiology 22: 1453–1464.
  • Pinho SS, Figueiredo J, Cabral J, Carvalho S, Dourado J, Magalhães A, Gärtner F, Mendonfa AM, Isaji T, Gu J et al. (2013). E-cadherin and adherens-junctions stability in gastric carcinoma: functional implications of glycosyltransferases involving N-glycan branching biosynthesis, N-acetylglucosaminyltransferases III and V. Biochim Biophys Acta 1830: 2690–2700.
  • Pinho SS, Seruca R, Gärtner F, Yamaguchi Y, Gu J, Taniguchi N, Reis CA (2011). Modulation of E-cadherin function and dysfunction by N-glycosylation. Cell Mol Life 68: 1011–1020.
  • Pocheć E, Janik M, Hoja-Łukowicz D, Link-Lenczowski P, Przybyło M, Lityńska A (2013). Expression of integrins α3β1 and α5β1 and GlcNAc β1,6 glycan branching influences metastatic melanoma cell migration on fibronectin. Eur J Cell Biol 92: 355–362.
  • Priglinger CS, Szober CM, Priglinger SG, Mer J, Euler KN, Kernt M, Gondi G, Behler J, Geerlof A, Kampik A et al. (2013). Galectin-3 induces clustering of CD147 and integrin-β1 transmembrane glycoprotein receptors on the RPE cell surface. PLoS One 8: e70011.
  • Qiu D, Owen K, Gray K, Bass R, Ellis V (2007). Roles and regulation of membrane-associated serine proteases. Biochem Soc Trans 35: 583–587.
  • Rabinovich GA, Toscano MA, Jackson SS, Vasta GR (2007). Functions of cell surface galectin-glycoprotein lattices. Curr Opin Struct Biol 17: 513–520.
  • Redzic JS, Kendrick AA, Bahmed K, Dahl KD, Pearson CG, Robinson WA, Robinson SE, Graner MW, Eisenmesser EZ (2013). Extracellular vesicles secreted from cancer cell lines stimulate secretion of MMP-9, IL-6, TGF-β1 and EMMPRIN. PLoS One 8: e71225.
  • Reticker-Flynn NE, Malta DF, Winslow MM, Lamar JM, Xu MJ, Underhill GH, Hynes RO, Jacks TE, Bhatia SN (2012). A combinatorial extracellular matrix platform identifies cell- extracellular matrix interactions that correlate with metastasis. Nat Commun 3: 1122.
  • Ries C (2014). Cytokine functions of TIMP-1. Cell Mol Life 71: 659–672.
  • Rosnoblet C, Peanne R, Legrand D, Foulquier F (2013). Glycosylation disorders of membrane trafficking. Glycoconj J 30: 23–31.
  • Ruhaak LR, Uh HW, Beekman M, Hokke CH, Westendorp RG, Houwing-Duistermaat J, Wuhrer M, Deelder AM, Slagboom PE (2011). Plasma protein N-glycan profiles are associated with calendar age, familial longevity and health. J Proteome Res 10: 1667–1674.
  • Saito T, Miyoshi E, Sasai K, Nakano N, Eguchi H, Honke K, Taniguchi N (2002). A secreted type of beta 1,6-N-acetylglucosaminyltransferase V (GnT-V) induces tumor angiogenesis without mediation of glycosylation: a novel function of GnT-V distinct from the original glycosyltransferase activity. J Biol Chem 277: 17002–17008.
  • Saldova R, Fan Y, Fitzpatrick JM, Watson RW, Rudd PM (2011). Core fucosylation and α2-3 sialylation in serum N-glycome is significantly increased in prostate cancer comparing to benign prostate hyperplasia. Glycobiology 21: 195–205.
  • Saldova R, Piccard H, Pérez-Garay M, Harvey DJ, Struwe WB, Galligan MC, Berghmans N, Madden SF, Peracaula R, Opdenakker G et al. (2013a). Increase in sialylation and branching in the mouse serum N-glycome correlates with inflammation and ovarian tumour progression. PLoS One 8: e71159.
  • Saldova R, Struwe WB, Wynne K, Elia G, Duffy MJ, Rudd PM (2013b). Exploring the glycosylation of serum CA125. Int J Mol 14: 15636–15654.
  • Sauerzapfe B, Krenek K, Schmiedel J, Wakarchuk WW, Pelantová H, Kren V, Elling L (2009). Chemo-enzymatic synthesis of poly-N-acetyllactosamine (poly-LacNAc) structures and their characterization for CGL2-galectin-mediated binding of ECM glycoproteins to biomaterial surfaces. Glycoconj J 26: 141–159.
  • Seberger PJ, Chaney WG (1999). Control of metastasis by Asn- linked, β1–6 branched oligosaccharides in mouse mammary cancer cells. Glycobiology 9: 235–241.
  • Seko A, Yamashita K (2005 Oct). Characterization of a novel galactose β1,3-N-acetylglucosaminyltransferase (β3Gn-T8): the complex formation of β3Gn-T2 and β3Gn-T8 enhances enzymatic activity. Glycobiology 15: 943–951.
  • Seto K, Uchida F, Baba O, Yamatoji M, Karube R, Warabi E, Sakai S, Hasegawa S, Yamagata K, Yanagawa T et al. (2013). Negative expression of N-acetylglucosaminyltransferase V in oral squamous cell carcinoma correlates with poor prognosis. Springerplus 2: 657.
  • Shen L, Liu Z, Tu Y, Xu L, Sun X, Wu S (2011). Regulation of MMP-2 expression and activity by β-1,3-N- acetylglucosaminyltransferase-8 in AGS gastric cancer cells. Mol Biol Rep 38: 1541–1550.
  • Siddiqui SF, Pawelek J, Handerson T, Lin CY, Dickson RB, Rimm DL, Camp RL (2005). Coexpression of β1,6-N- acetylglucosaminyltransferase V glycoprotein substrates defines aggressive breast cancers with poor outcome. Cancer Epidemiol Biomarkers Prev 14: 2517–2523.
  • Siu A, Chang J, Lee C, Lee S, Lee C, Ramos DM (2013). Expression of EMMPRIN modulates mediators of tumor invasion in oral squamous cell carcinoma. J Calif Dent Assoc 41: 831–838.
  • Srinivasan N, Bane SM, Ahire SD, Ingle AD, Kalraiya RD (2009). Poly N-acetyllactosamine substitutions on N- and not O-oligosaccharides or Thomsen-Friedenreich antigen facilitate lung specific metastasis of melanoma cells via galectin-3. Glycoconj J 26: 445–456.
  • Stetler-Stevenson WG, Gavil NV (2014). Normalization of the tumor microenvironment: evidence for tissue inhibitor of metalloproteinase-2 as a cancer therapeutic. Connect Tissue Res 55: 13–19.
  • Stowell SR, Arthur CM, Mehta P, Slanina KA, Blixt O, Leffler H, Smith DF, Cummings RD (2008). Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem 283: 10109–10123.
  • Sumer-Bayraktar Z, Nguyen-Khuong T, Jayo R, Chen DD, Ali S, Packer NH, Thaysen-Andersen M (2012). Micro- and macroheterogeneity of N-glycosylation yields size and charge isoforms of human sex hormone binding globulin circulating in serum. Proteomics 12: 3315–3327.
  • Suzuki M, Kobayashi H, Kanayama N, Saga Y, Suzuki M, Lin CY, Dickson RB, Terao T (2004). Inhibition of tumor invasion by genomic down-regulation of matriptase through suppression of activation of receptor-bound pro-urokinase. J Biol Chem 279: 14899–14908.
  • Takahashi M, Tsuda T, Ikeda Y, Honke K, Taniguchi N (2004). Role of N-glycans in growth factor signaling. Glycoconj J 20: 207–212.
  • Takamatsu S, Antonopoulos A, Ohtsubo K, Ditto D, Chiba Y, Le DT, Morris HR, Haslam SM, Dell A, Marth JD et al. (2010). Physiological and glycomic characterization of N-acetylglucosaminyltransferase-IVa and -IVb double deficient mice. Glycobiology 20: 485–497.
  • Takamatsu S, Korekane H, Ohtsubo K, Oguri S, Park JY, Matsumoto A, Taniguchi N (2013). N-Acetylglucosaminyltransferase (GnT) assays using fluorescent oligosaccharide acceptor substrates: GnT-III, IV, V, and IX (GnT-Vb). In: Brockhausen I, editor. Glycosyltransferases: Methods and Protocols. 1st ed. New York, NY, USA: Springer Science Business Media, pp. 283–298.
  • Takeuchi H, Haltiwanger RS (2014). Significance of glycosylation in Notch signaling. Biochem Biophys Res Commun (in press).
  • Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS (2000). Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single- chain urokinase-type plasminogen activator as substrates. J Biol Chem 275: 26333–26342.
  • Tan Z, Lu W, Li X, Yang G, Guo J, Yu H, Li Z, Guan F (2014). Altered N-glycan expression profile in epithelial-to-mesenchymal transition of NMuMG cells revealed by an integrated strategy using mass spectrometry and glycogene and lectin microarray analysis. J Proteome Res 13: 2783–2795.
  • Tanaka K, Moriwaki K, Yokoi S, Koyama K, Miyoshi E, Fukase K (2013). Whole-body imaging of tumor cells by azaelectrocyclization: visualization of metastasis dependence on glycan structure. Bioorg Med Chem 21: 1074–1047.
  • Taniguchi N, Korekane H (2011). Branched N-glycans and their implications for cell adhesion, signaling and clinical applications for cancer biomarkers and in therapeutics. BMB Rep 44: 772–781.
  • Taylor ME, Drickamer K (2011). Introduction to Glycobiology. 3rd ed. New York, NY, USA: Oxford University Press.
  • Tian Y, Zhang H (2013). Characterization of disease-associated N-linked glycoproteins. Proteomics 13: 504–511.
  • Togayachi A, Kozono Y, Kuno A, Ohkura T, Sato T, Hirabayashi J, Ikehara Y, Narimatsu H (2010). β3GnT2 (B3GNT2), a major polylactosamine synthase: analysis of B3GNT2-deficient mice. Methods Enzymol 479: 185–204.
  • Tokhtaeva E, Sachs G, Vagin O (2010). Diverse pathways for maturation of the Na, K-ATPase β1 and β2 subunits in the endoplasmic reticulum of Madin-Darby canine kidney cells. J Biol Chem 285: 39289–39302.
  • Tsui KH, Chang PL, Feng TH, Chung LC, Sung HC, Juang HH (2008). Evaluating the function of matriptase and N-acetylglucosaminyltransferase V in prostate cancer metastasis. Anticancer Res 28: 1993–1999.
  • Tuccillo FM, de Laurentiis A, Palmieri C, Fiume G, Bonelli P, Borrelli A, Tassone P, Scala I, Buonaguro FM, Quinto I et al. (2014). Aberrant glycosylation as biomarker for cancer: focus on CD43. Biomed Res Int 2014: 742831.
  • Twu YC, Hsieh CY, Lin M, Tzeng CH, Sun CF, Yu LC (2010). Phosphorylation status of transcription factor C/EBPα determines cell-surface poly-LacNAc branching (I antigen) formation in erythropoiesis and granulopoiesis. Blood 115: 2491–2499.
  • Uhland K (2006). Matriptase and its putative role in cancer. Cell Mol Life 63: 2968–2978.
  • Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J (2009). Essentials of Glycobiology. 2nd ed. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press.
  • Venkatachalam MA, Weinberg JM (2013). New wrinkles in old receptors: core fucosylation is yet another target to inhibit TGF-β signaling. Kidney Int 84: 11–14.
  • Wang C, Yang Y, Yang Z, Liu M, Li Z, Sun L, Mei C, Chen H, Chen L, Wang L et al. (2009). EGF-mediated migration signaling activated by N-acetylglucosaminyltransferase-V via receptor protein tyrosine phosphatase kappa. Arch Biochem Biophys 486: 64–72.
  • Wang X, Gu J, Ihara H, Miyoshi E, Honke K, Taniguchi N (2006). Core fucosylation regulates epidermal growth factor receptor- mediated intracellular signaling. J Biol Chem 281: 2572–2577.
  • Wang X, Inoue S, Gu J, Miyoshi E, Noda K, Li W, Mizuno-Horikawa Y, Nakano M, Asahi M, Takahashi M et al. (2005). Dysregulation of TGF-β1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose- deficient mice. P Natl Acad Sci USA 102: 15791–15796.
  • Wang Y, Tan J, Smith M, Ditto D, Panico M, Campbell R, Varki N, Long J, Jaeken J, Levinson S et al. (2001). Modeling human congenital disorder of glycosylation type IIa in the mouse: conservation of asparagine-linked glycan-dependent functions in mammalian physiology and insights into disease pathogenesis. Glycobiology 11: 1050–1070.
  • Weidle UH, Scheuer W, Eggle D, Klostermann S, Stockinger H (2010). Cancer-related issues of CD147. Cancer Genomics Proteomics 7: 157–169.
  • Wu SL, Taylor AD, Lu Q, Hanash SM, Im H, Snyder M, Hancock WS (2013). Identification of potential glycan cancer markers with sialic acid attached to sialic acid and up-regulated fucosylated galactose structures in epidermal growth factor receptor secreted from A431 cell line. Mol Cell Proteomics 12: 1239– 1249.
  • Xu O, Isaji T, Lu Y, Gu W, Kondo M, Fukuda T, Du Y, Gu J (2012). Roles of N-acetylglucosaminyltransferase III in epithelial- to-mesenchymal transition induced by transforming growth factor β1 (TGF-β1) in epithelial cell lines. J Biol Chem 287: 16563–16574.
  • Yamamoto H, Swoger J, Greene S, Saito T, Hurh J, Sweeley C, Leestma J, Mkrdichian E, Cerullo L, Nishikawa A et al. (2000). β1,6- N-Acetylglucosamine-bearing N-glycans in human gliomas implication for role in regulating invasivity. Cancer Res 60: 134–142.
  • Yang HM, Yu C, Yang Z (2012). N-acetylglucosaminyltransferase V negatively regulates integrin α5β1-mediated monocyte adhesion and transmigration through vascular endothelium. Int J Oncol 41: 589–598.
  • Yao M, Zhou DP, Jiang SM, Wang QH, Zhou XD, Tang ZY, Cu JX (1999). Elevated activity of N-acetylglucosaminyltransferase V in human hepatocellular carcinoma. J Cancer Res Clin Oncol 124: 27–30.
  • Ye Z, Marth JD (2004). N-glycan branching requirement in neuronal and postnatal viability. Glycobiology 14: 547–58.
  • Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW (1997). AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90: 5002–5012.
  • Yin H, Lin Z, Nie S, Wu J, Tan Z, Zhu J, Dai J, Feng Z, Marrero J, Lubman DM (2014). Mass-selected site-specific core- fucosylation of ceruloplasmin in alcohol-related hepatocellular carcinoma. J Proteome Res 13: 2887–2896.
  • Yip B, Chen SH, Mulder H, Höppener JW, Schachter H (1997). Organization of the human beta-1,2-N- acetylglucosaminyltransferase I gene (MGAT1), which controls complex and hybrid N-glycan synthesis. Biochem J
  • Zhang WL, Revers L, Pierce M, Schachter H (2000). Regulation of expression of the human beta-1,2-N- acetylglucosaminyltransferase II gene (MGAT2) by Ets transcription factors. Biochem J 47: 511–518.
  • Zhang X, Wang Y, Qian Y, Wu X, Zhang Z, Liu X, Zhao R, Zhou L, Ruan Y, Xu J et al. (2014). Discovery of specific metastasis- related N-glycan alterations in epithelial ovarian cancer based on quantitative glycomics. PLoS One 9: e87978.
  • Zhang Z, Sun J, Hao L, Liu C, Ma H, Jia L (2013). Modification of glycosylation mediates the invasive properties of murine hepatocarcinoma cell lines to lymph nodes. PLoS One 8: e65218.
  • Zhao Y, Sato Y, Isaji T, Fukuda T, Matsumoto A, Miyoshi E, Gu J, Taniguchi N (2008). Branched N-glycans regulate the biological functions of integrins and cadherins. FEBS J 275: 1939–1948.
  • Zhao Y, Chen S, Gou WF, Niu ZF, Zhao S, Xiao LJ, Takano Y, Zheng HC (2013). The role of EMMPRIN expression in ovarian epithelial carcinomas. Cell Cycle 12: 2899–2913.
  • Zhao YP, Xu XY, Fang M, Wang H, You Q, Yi CH, Ji J, Gu X, Zhou PT, Cheng C et al. (2014). Decreased core-fucosylation contributes to malignancy in gastric cancer. PLoS One 9: e94536.
  • Zheng HC, Takahashi H, Murai Y, Cui ZG, Nomoto K, Miwa S, Tsuneyama K, Takano Y (2006). Upregulated EMMPRIN/ CD147 might contribute to growth and angiogenesis of gastric carcinoma: a good marker for local invasion and prognosis. Br J Cancer 95: 1371–1378.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Invadopodia: proteolytic feet of cancer cells

Gizem BATI, Devrim Pesen OKVUR

Induction of apoptosis in the cervical cancer cell line HeLa by a novel metabolite extracted from the fungus Aspergillus japonicus Saito

Apoorva PRABHU, Prerana VENKAT, Bharath GAJARAJ, Varalakshmi KILINGAR NADUMANE

Current paradigms of cancer chemoprevention

Rajendra G. MEHTA

The role of ABC transporters in anticancer drug transport

Serhan KARVAR

Triumph or tragedy: progress in cancer

Ayşe Şebnem ERENLER, Hikmet GEÇKİL

It takes 2 antioxidants to tango: the interaction between manganese superoxide dismutase and glutathione peroxidase-1

Dede N. EKOUE, Alan M. DIAMOND

Analysis of Bimbam , a novel glucocorticoid-induced BH3-only transcript in cell lines and children with acute lymphoblastic leukemia

Muhammad MANSHA, Muhammad WASIM, Ali Raza AWAN, Asma Abdul LATIF

Genotoxic, cytotoxic, and apoptotic effects of crude extract of Usnea filipendula Stirt. in vitro

Serap ÇELİKLER KASIMOĞULLARI, Seyhan ORAN, Ferda ARI, Engin ULUKAYA

Downregulation of c-Myc mediated ODC expression after purvalanol treatment is under control of upstream MAPK signaling axis in MCF-7 breast cancer cells

Pınar OBAKAN, Gizem ALKURT, Betsi KÖSE, Ajda ÇOKER GÜRKAN, Elif Damla ARISAN, Deniz COŞKUN, Zeynep Narçin ÜNSAL

Glycosylation changes leading to the increase in size on the common core of N-glycans, required enzymes, and related cancer-associated proteins

Sabire KARAÇALI, Savaş İZZETOĞLU, Remziye DEVECİ