Efficient polyhydroxybutyrate production from Bacillus thuringiensis using sugarcane juice substrate

Efficient polyhydroxybutyrate production from Bacillus thuringiensis using sugarcane juice substrate

The present study focused on the screening and optimization of biopolymer polyhydroxybutyrate (PHB) production byBacillusspp. using cost-effective substrates. Among 602 localBacillusisolates,Bacillus thuringiensisB417-5 produced the highest amountof PHB (2.278 g/L, 60.07% of dry cell weight, DCW).1 H NMR and FTIR analyses of the extracted polymer revealed the characteristicpeaks of PHB. The optimization results showed that the highest PHB accumulation (2.768 g/L, 72.08% of DCW) was achieved whenculturingB. thuringiensisB417-5 in a nitrogen-deficient medium containing 1% total sugar from sugarcane juice and 0.5% yeast extract,with a pH of 7.0 and an incubation temperature of 37 °C for 48 h.B. thuringiensisB417-5 can thus be considered a good candidate forlarge-scale production of PHB. We are reporting for the first time that sugarcane juice is a promising carbon source for economical PHBproduction byB. thuringiensis.

___

  • Alarfaj AA, Arshad M, Sholkamy EN, Munusamy MA (2015). Extraction and characterization of polyhydroxybutyrates (PHB) from Bacillus thuringiensis KSADL127 isolated from mangrove environments of Saudi Arabia. Braz Arch Biol Techn 58: 781-788.
  • Aly MM, Albureikan MO, Rabey HE, Kabli SA (2013). Effects of culture conditions on growth and poly-β-hydroxybutyric acid production by Bacillus cereus MM7 isolated from soil samples from Saudi Arabia. Life Sci J 10: 1884-1891.
  • Bernard M (2014). Industrial potential of polyhydroxyalkanoate bioplastic: a brief review. University of Saskatchewan Undergraduate Research Journal 1: 1-14.
  • Chanasit W, Hodgson B, Sudesh K, Umsakul K (2016). Efficient production of polyhydroxyalkanoates (PHAs) from Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) as the sole carbon source. Biosci Biotechnol Biochem 80: 1-11.
  • Chen GQ, Wu Q (2005). The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26: 6565-6578.
  • Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010). NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29: 2176-2179.
  • Gowda V, Shivakumar S. (2014). Agrowaste-based polyhydroxyalkanoate (PHA) production using hydrolytic potential of Bacillus thuringiensis IAM 12077. Braz Arch Biol Techn 57: 55-61.
  • Harding KG, Dennis JS, von Blottnitz H, Harrison ST (2007). Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-beta-hydroxybutyric acid using life cycle analysis. J Biotechnol 130: 57-66.
  • Hassan MA, Bakhiet EK, Ali SG, Hussien HR (2016). Production and characterization of polyhydroxybutyrate (PHB) produced by Bacillus sp. isolated from Egypt. J App Pharm Sci 6: 46-51.
  • Kulpreecha S, Boonruangthavorn A, Meksiriporn B, Thongchul N (2009). Inexpensive fed-batch cultivation for high poly(3- hydroxybutyrate) production by a new isolate of Bacillus megaterium . J Biosci Bioeng 107: 240-245.
  • Lee SY (1996). Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol 14: 431-438.
  • Li R, Jiang Y, Wang X, Yang J, Gao Y, Zi X, Zhang X, Gao H, Hu N (2013). Psychrotrophic Pseudomonas mandelii CBS-1 produces high levels of poly-beta-hydroxybutyrate. Springerplus 2: 1-7.
  • Moonda D, Saechow S, Thammasittirong SNR, Thammasittirong A (2017). Screening and optimization of polyhydroxyalkanoate production from Bacillus spp. Burapha Science Journal 22: 288-298.
  • Moorkoth D, Nampoothiri KM (2016). Production and characterization of poly(3-hydroxybutyrate-co- 3hydroxyvalerate) (PHBV) by a novel halotolerant mangrove isolate. Bioresource Technol 201: 253-260.
  • Pal A, Prabhu A, Kumar AA, Rajagopal B, Dadhe K, Ponnamma V, Shivakumar S (2009). Optimization of process parameters for maximum poly(-beta-)hydroxybutyrate (PHB) production by Bacillus thuringiensis IAM 12077. Pol J Micobiol 58: 149-154.
  • Pena C, Castillo T, Garcia A, Millan M, Segura D (2014). Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work. Microb Biotechnol 7: 278-293.
  • Prieto A, Escapa IF, Martínez V, Dinjaski N, Herencias C, de la Peña F, Tarazona N, Revelles O (2016). A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida. Environ Microbiol 18: 341-357.
  • Rohini D, Phadnis S, Rawal SK (2006). Synthesis and characterization of poly-β-hydroxybutyrate from Bacillus thuringiensis R1. Indian J Biotechnol 5: 276-283.
  • Saleem F, Aslam R, Saleem Y, Naz S, Syed Q, Munir N, Khurshid N, Shakoori AR (2014). Analysis and evaluation of growth parameters for optimum production of polyhydroxybutyrate (PHB) by Bacillus thuringiensis strain CMBL-BT-6. Pak J Zool 46: 1337-1344.
  • Santhanam A, Sasidharan S (2010). Microbial production of polyhydroxy alkanotes (PHA) from Alcaligenes spp. and Pseudomonas oleovorans using different carbon sources. Afr J Biotechnol 9: 3144-3150.
  • Senatham S, Chamduang T, Kaewchingduang Y, Thammasittirong A, Srisodsuk M, Elliston A, Roberts IN, Waldron KW, Thammasittirong SN (2016). Enhanced xylose fermentation and hydrolysate inhibitor tolerance of Scheffersomyces shehatae for efficient ethanol production from non-detoxified lignocellulosic hydrolysate. Springerplus 5: 1-8.
  • Serna-Cock L, Parrado-Saboya DS (2014). Sugar cane juice for polyhydroxyalkanoate (PHA) production by batch fermentation. Afr J Biotechnol 13: 4019-4027.
  • Shah AA, Hasan F, Hameed A, Ahmed S (2008). Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26: 246-265.
  • Shamala TR, Chandrashekar A, Vijayendra SV, Kshama L (2003). Identification of polyhydroxyalkanoate (PHA)-producing Bacillus spp. using the polymerase chain reaction (PCR). J Appl Microbiol 94: 369-374.
  • Sharma P, Bajaj BK (2015). Production and characterization of poly-3-hydroxybutyrate from Bacillus cereus PS10. Int J Biol Macromol 81: 241-248.
  • Sheu DS, Wang YT, Lee CY (2000). Rapid detection of polyhydroxyalkanoate-accumulating bacteria isolated from the environment by colony PCR. Microbiology 146: 2019-2025.
  • Suwannasing W, Imai T, Kaewkannetra P (2015). Cost-effective defined medium for the production of polyhydroxyalkanoates using agricultural raw materials. Bioresour Technol 194: 67-74.
  • Suwannasing W, Moonamart S, Kaewkannetra P (2011). Yields of polyhydroxyalkanoates (PHAs) during batch fermentation of sugar cane juice by Alcaligenes latus and Alcaligenes eutrophus . J Life Sci 5: 960-966.
  • Takara K, Ushijima K, Wada K, Iwasaki H, Yamashita M (2007). Phenolic compounds from sugarcane molasses possessing antibacterial activity against cariogenic bacteria. J Oleo Sci 56: 611-614.
  • Tan GYA, Chen CL, Li L, Ge L, Wang L, Razaad IMN, Li Y, Zhao L, Mo Y, Wang JY (2014). Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers (Basel) 6: 706-754.
  • Thammasittirong A, Attathom T (2008). PCR-based method for the detection of cry genes in local isolates of Bacillus thuringiensis from Thailand. J Invertebr Pathol 98: 121-126.
  • Thirumala M, Reddy SV, Mahmood SK (2010). Production and characterization of PHB from two novel strains of Bacillus spp. isolated from soil and activated sludge. J Ind Microbiol Biotechnol 37: 271-278.
  • Tripathi AD, Yadav A, Jha A, Srivastava SK (2012). Utilizing of sugar refinery waste (cane molasses) for production of bio-plastic under submerged fermentation process. J Polym Environ 20: 446-453.
  • Valappil SP, Boccaccini AR, Bucke C, Roy I (2007). Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces . Antonie van Leeuwenhoek 91: 1-17.
  • Valappil SP, Rai R, Bucke C, Roy I (2008). Polyhydroxyalkanoate biosynthesis in Bacillus cereus SPV under varied limiting conditions and an insight into the biosynthetic genes involved. J Appl Microbiol 104: 1624-1635.
  • Wu Q, Huang H, Hu G, Chen J, Ho KP, Chen GQ (2001). Production of poly-3-hydroxybutyrate by Bacillus sp. JMa5 cultivated in molasses media. Antonie van Leeuwenhoek 80: 111-118.
  • Yüksekdağ ZN, Aslim B, Beyatli Y, Mercan N (2004). Effect of carbon and nitrogen sources and incubation times on poly-beta- hydroxybutyrate (PHB) synthesis by Bacillus subtilis 25 and Bacillus megaterium 12. Afr J Biotechnol 3: 63-66.
  • Zhang Y, Sun W, Wang H, Geng A (2013). Polyhydroxybutyrate production from oil palm empty fruit bunch using Bacillus megaterium R11. Bioresour Technol 147: 307-314.