Determination and pathogenicity of the bacterial flora ssociated with the spruce bark beetle, Ips typographus (L.) (Coleoptera: Curculionidae: Scolytinae)

Sekiz dişli kabuk böceği, Ips typographus (L.) (Coleoptera: Curculionidae: Scolytinae), en önemli ladin zararlılarından biridir. Bu zararlıdan konvensiyonel bakteriyolojik testler (API 20E ve API 50CH kitleri ve VITEK sistem bioMerieux) ve 16S rRNA gen sekans analizleri kullanılarak sekiz bakteriyal izolat belirlendi. Yapılan çalışmalara dayanılarak tüm izolatlar cins ya da tür seviyesinde tanımlandı; Bacillus sphaericus (It1), Acinetobacter sp. (It2), Kluyvera cryocrescens (It3), Acinetobacter sp. (It4), Vagococcus sp. (It5), Acinetobacter sp. (It6), Proteus vulgaris (It7) ve Serratia liquefaciens (It8). Ayrıca bu bakteriyal izolatların I. typographus erginleri üzerinde bioassayleri de yapıldı. Bakteriyal izolatların 10 gün ve 1,8 × 10 9bakteri/mL konsantrasyondaki insektisidal aktivite sonuçları: B. sphaericus (It1) için % 13,3, Acinetobacter sp. (It2 and It4) için % 16,6, P. v ul g ar i s (It7) için % 23,3 ve S. liquefaciens (It8) için ise % 53,3’dir. Sadece kontrole göre en yüksek insektisidal aktiviteyi It8 ürettiği için, S. liquefaciens sekiz dişli kabuk böceğine karşı biyolojik kontrol potansiyeline sahip olabilir.

Sekiz dişli kabuk böceği Ips typographus (L.) (Coleoptera: Curculionidae: Scolytinae)’un bakteriyal florasının belirlenmesi ve patojenitesi

The Eurasian spruce bark beetle, Ips typographus (L.) (Coleoptera: Curculionidae: Scolytinae), is one of the most serious pests of spruce trees. We identified 8 bacterial isolates from this pest using conventional bacteriological tests (API 20E and API 50CH strips, and VITEK system (bioMerieux) analysis) and 16S rRNA gene sequence analysis. Based on these studies, all isolates could be identified to the genus or species level as Bacillus sphaericus (It1), Acinetobacter sp. (It2), Kluyvera cryocrescens (It3), Acinetobacter sp. (It4), Vagococcus sp. (It5), Acinetobacter sp. (It6), Proteus vulgaris (It7), and Serratia liquefaciens (It8). We also evaluated the pathogenicity of these bacteria on adults of I. typographus. The insecticidal activity of the bacterial isolates at a concentration of 1.8 × 10 9bacteria/mL, within 10 days, was 13.3% for B. sphaericus (It1), 16.6% for Acinetobacter sp. (It2 and It4), 23.3% for P. v ul g ar i s (It7), and 53.3% for S. liquefaciens (It8). Since only It8 produced significantly increased mortality relative to the control, the bacterium S. liquefaciens may have potential as a biological control agent against the Eurasian spruce bark beetle.

___

  • 1. Christiansen E, Bakke A. The spruce bark beetle of Eurasia. In: Berrymann AA. ed. Dynamics of Forest Insect Populations. Plenum. New York; 1988: pp. 479-503.
  • 2. Grégoire JC, Evans HF. Damage and control of BAWBILT organisms, an overview. In: Lieutier F, Day KR, Battisti A et al. eds. Bark and Wood Boring Insects in Living Trees in Europe, A Synthesis. Kluwer Academic Publishers. London; 2004: pp. 19-37.
  • 3. Paine TD, Raffa KF, Harrington TC. Interactions among Scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42: 179-206, 1997.
  • 4. Thalenhorst W. Characteristics of the population dynamics of the large spruce bark beetle Ips typographus L. Schriftenreihe der Forstlichen Fakultät der Universität Göttingen 21: 1-126, 1958.
  • 5. Eidmann HH. Impact of bark beetles on forests and forestry in Sweden. J Appl Entomol 114: 193-200, 1992.
  • 6. Weslien J, Annila E, Bakke A et al. Estimating risk for spruce bark beetle (Ips typographus (L.)) damage using pheromone- baited traps and trees. Scand J Forest Res 4: 87-98, 1989.
  • 7. Raty L, Drumont A, De Windt N et al. Mass trapping of the spruce bark beetle Ips typographus L.: traps or trap trees? Forest Ecol Manag 78: 191-205, 1995.
  • 8. Demir İ, Gürel N, Nalçacıoğlu R et al. Comparative susceptibilities of six insect cell lines to infection by Malacosoma neustria nucleopolyhedrovirus (ManeNPV). Turk J Biol 33: 259- 273, 2009.
  • 9. Wegensteiner R. Chytridiopsis typographi (Protozoa, Microsporidia) and other pathogens in Ips typographus (Coleoptera, Scolytidae). IOBC/WPRS Bull 17: 39-42, 1994.
  • 10. Sezen K, Demir İ, Demirbağ Z. Identification and pathogenicity of entomopathogenic bacteria from common cockchafer, Melolontha melolontha L. (Coleoptera: Scarabaeidae). New Zeal J Crop Hort Sci 35: 79-85, 2007.
  • 11. Burges HD. Control of insects by bacteria. Parasitol 84: 79-117, 1982.
  • 12. Swiecicka I, Mahillon J. Diversity of commensal Bacillus cereus sensu lato isolated from the common sow bug (Porcellio scaber, Isopoda). FEMS Microbiol Ecol 56: 132-140, 2006.
  • 13. Lau WL, Jumars PA, Armbrust EV. Genetic diversity of attached bacteria in the hindgut of the deposit-feeding shrimp Neotrypaea (formerly Callianassa) californiensis (Decapoda: Thalassinidae). Micro Ecol 43: 455-466, 2002.
  • 14. Buchner P. Endosymbiosis of Animals with Plant Microorganisms. Wiley Interscience. New York; 1965.
  • 15. Baumann P, Baumann L, Lai CY et al. Genetics, physiology and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Ann Rev Microbiol 49: 55-94, 1995.
  • 16. Blattner FR, Plunkett G 3rd, Bloch CA et al. The complete genome sequence of Escherichia coli K-12. Sci 277: 1453-1474, 1997.
  • 17. Beard CB, Mason PW, Aksoy S et al. Transformation of an insect symbiont and expression of a foreign gene in the Chagas’ disease vector Rhodnius prolixus. Am J Trop Med Hyg 46: 195- 200, 1992.
  • 18. Beard CB, Durvasula RV, Richards FF. Bacterial symbiosis in arthropods and the control of disease transmission. Emerg Infect Dis 4: 581-591, 1998.
  • 19. Brand M, Bracke W, Markovetz A et al. Production of verbenol pheromone by a bacterium isolated from bark beetles. Nature 254: 136-137, 1975.
  • 20. Lipa JJ, Wiland E. Bacteria isolated from cutworms and their infectivity to Agrotis sp. Acta Microbiol Pol 4: 127-140, 1972.
  • 21. Poinar GO Jr, Thomas GM. Diagnostic manual for the identification of insect pathogens. Plenum Press. New York; 1978.
  • 22. Johnson TR, Case CL. Laboratory Experiments in Microbiology. Benjamin Cummings. California; 1992.
  • 23. Behrendt U, Ulrich A, Schumann P et al. A taxonomic study of bacteria isolated from grasses: a proposed new species Pseudomonas graminis sp. nov. Int J Syst Bacteriol 49: 297-308, 1999.
  • 24. Peix A, Rivas R, Mateos PF et al. Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. Int J Sys Evol Microbiol 53: 2067-2072, 2003.
  • 25. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory. New York; 1989.
  • 26. Altschul SF, Gish W, Miller W et al. Basic local alignment search tool. J Mol Biol 215: 403-410, 1990.
  • 27. Ben-Dov E, Boussiba S, Zaritsky A. Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. J Bacteriol 177: 2851-2857, 1995.
  • 28. Moar WJ, Pusztzai-Carey M, Mack TP. Toxicity of purified proteins and the HD-1 strain from Bacillus thuringiensis against lesser cornstalk borer (Lepidoptera: Pyralidae). J Eco Entomol 88: 606-609, 1995.
  • 29. Lipa JJ, Aldebis KK, Vargas-Osuna E et al. Occurrence, biological activity, and host range of entomopoxvirus B from Ocnogyna baetica (Lepidoptera: Arctiidae). J Invertebr Pathol 63: 130-134. 1994.
  • 30. Minitab User’s Guide, Release 11. Minitab, State College, PA. 1997.
  • 31. Farmer JJ 3rd, Fanning GR, Huntley-Carter GP et al. Kluyvera, a new (redefined) genus in the family Enterobacteriaceae: identification of Kluyvera ascorbata sp. nov. and Kluyvera cryocrescens sp. nov. in clinical specimens. J Clin Microbiol 13: 919-933, 1981.
  • 32. Woese CR. Bacterial evolution. Microbial Rev 51: 221-271, 1987.
  • 33. Stackebrandt E, Liesack W, Witt D. Ribosomal RNA and rRNA sequence analyses. Gene 115: 255-260, 1992.
  • 34. Demir İ, Sezen K, Demirbağ Z. The first study on bacterial flora and biological control agent of Anoplus roboris (Sufr., Coleoptera). J Microbiol 40: 104-108, 2002.
  • 35. Sramova H, Daniel M, Absolonova V et al. Epidemiological role of arthropods detectable in health facilities. J Hosp Infect 20: 281-292, 1992.
  • 36. Bahar AA, Demirbağ Z. Isolation of pathogenic bacteria from Oberea linearis (Coleoptera: Cerambycidae). Biologia 62: 1-13, 2007.
  • 37. Ertürk O, Demirbağ Z. Studies on bacterial flora and biological control agent of Cydia pomonella L. (Lepidoptera: Tortricidae). Afr J Biotechnol 5: 2081-2085, 2006.
  • 38. Farmer JJ 3rd, Davis BR, Hickman-Brenner FW et al. Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J Clin Microbiol 21: 46-76, 1985.
  • 39. Singh G, Sharma JR, Hoondal GS. Chitinase production by Serratia marcescens GG5. Turk J Biol 32: 231-236, 2008.
  • 40. Wegensteiner R, Weiser J. A new entomopoxvirus in the bark beetle Ips typographus (Coleoptera: Scolytidae). J Invertebr Pathol 65: 203-205, 1995.
  • 41. Wegensteiner R, Weiser J. Occurrence of Chytridiopsis typographi (Microspora, Chytridiopsida) in Ips typographus L. (Coleoptera, Scolytidae) field populations and in a laboratory stock. J Appl Entomol 120: 595-602, 1996.
  • 42. Wegensteiner R, Weiser J, Fuhrer E. Observations on the occurrence of pathogens in the bark beetle Ips typographus L. (Coleoptera, Scolytidae). J Appl Entomol 120: 199-204, 1996.
  • 43. Weiser J, Wegensteiner R, Zizka Z. Ultrastructures of Nosema typographiWeiser 1955 (Microspora: Nosematidae) of the bark beetle Ips typographus (Coleoptera: Scolytidae). J Invertebr Pathol 70: 156-160, 1997.
  • 44. Li H, Medina F, Vinson SB et al. Isolation, characterization, and molecular identification of bacteria from the red imported fire ant (Solenopsis invicta) midgut. J Invertebr Pathol 89: 203-209, 2005.
  • 45. Sezen K, Demirbağ Z. Isolation and insecticidal activity of some bacteria from the hazelnut beetle (Balaninus nucum L.). Appl Entomol Zool 34: 85-89, 1999.
  • 46. Huber M, Cabib E, Miller L. Malaria parasite chitinase and penetration of the mosquito peritrophic membrane. Proc Nati Aca Sci USA 88: 2807-2810, 1991.
  • 47. Schlein Y, Raymond LJ, Shlomai J. Chitinase secreted by Leishmania functions in sandfly vector. Proceedings of the Royal Society London Series B 245: 121-126, 1991.
  • 48. Fuhrman JA, Lee J, Dalamagas D. Structure and function of a family of chitinase isozymes from Brugian microflariae. Exp Parasitol 80: 672-680, 1995.
  • 49. Hawtin RE, Zarkowska T, Arnold K et al. Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virol 238: 243-253, 1997.
  • 50. Smirnoff WA. Three years of aerial field experiments with Bacillus thuringiensis plus chitinase formulation against the spruce budworm. J Invertebr Pathol 24: 344-348, 1974.
  • 51. Wiwat C, Lertcanawanichakul M, Siwayapram P et al. Expression of chitinase-encoding genes from Aeromonas hydrophila and Pseudomonas maltophila in Bacillus thuringiensis subsp. israelensis. Gene 179: 119-126, 1996.
  • 52. Sneh B, Schuster S, Gross S. Improvement of the insecticidal activity of Bacillus thuringiensis var. entomocidus on larvae of Spodoptera littoralis (Lepidoptera: Noctuidae) by addition of chitinolytic bacteria, a phagostimulant and a UV-protectant. J Appl Entomol 96: 77-83, 1983.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Phylogenetic analysis of peste des petits ruminants virus (PPRV) isolated in Iran based on partial sequence data from the fusion (F) protein gene

Majid ESMAELIZAD, Saber JELOKHANI-NIARAKI, Rohani KARGAR-MOAKHAR

Is the induction of $H _2O _2$-detoxifying antioxidant enzyme activities sufficient to protect barley cultivars from oxidative stress by UV-B irradiation alone or pretreatment with high temperature and NaCl?

Yasemin EKMEKÇİ, Hüsnü ÇAKIRLAR, Nuran ÇİÇEK

The effects of the composition of growth medium and fermentation conditions on the production of lipase by R. delemar

Ünsal AÇIKEL, Mehtap ERŞAN, Yeşim SAĞ AÇIKEL

Effects of vesicular arbuscular mycorrhiza Glomus intraradices on photosynthetic pigments, antioxidant enzymes, lipid peroxidation, and chromium accumulation in maize plants treated with chromium

Raziyeh RAHMATY, Jalil KHARA

The effects of UV radiation on some structural and ultrastructural parameters in pepper (Capsicum longum A.DC.)

Siavash HOSSEINI SARGHEIN, Jirair CARAPETIAN, Jalil KHARA

The effect of diazinon on egg fertility and development in Drosophila melanogaster

Ayla KARATAŞ, Zafer BAHÇECİ, Ensar BAŞPINAR

Antioxidant properties of different extracts of black mulberry (Morus nigra L.)

Türkan KUTLU, Gökhan DURMAZ, Burhan ATEŞ, İsmet YILMAZ, M. Şevket ÇETİN

Molecular cloning, characterization, and homologous expression of an endochitinase gene from Bacillus thuringiensis serovar morrisoni

Sezer OKAY, Gülay ÖZCENGİZ

Chlorococcal chlorophyte composition, community structure, and seasonal variations in the shallow lakes of the Kızılırmak Delta, Turkey

Elif Neyran SOYLU, Arif GÖNÜLOL, Faruk MARAŞLIOĞLU

Chromosomal differentiation between populations of Clarias gariepinus (Burchell, 1822) from the Göksu Delta and Orontes River (Turkey)

Arzu KARAHAN, Serap ERGENE