Cellular and molecular basis of cardiac regeneration

Cellular and molecular basis of cardiac regeneration

Heart disease is one of the largest causes of death in humans throughout the developed world. Despite its critical role in maintaining physiologic homeostasis, the adult mammalian heart does not exhibit a significant capacity for regeneration. By contrast, several lower vertebrates exhibit a remarkable ability to regenerate the aging myocardium in response to severe injury. Additionally, recent evidence has shed light on a transient regenerative window in postnatal mammals. In this review, we discuss key findings that help to unravel the differences in cardiac regeneration across phylogeny and ontogeny. Furthermore, we highlight recent significant progress in the pursuit of adult mammalian cardiac regeneration. Collectively, this important body of work has great potential impact on human therapy for heart failure.

___

  • ReferencesAffolter M, Basler K (2007). The decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nat Rev Genet 8: 663–674.Aguirre A, Montserrat N, Zachiggna S, Nivet E, Hishida T, Krause MN, Kurian L, Ocampo A, Vazquez-Ferrer E, Rodriguez-Esteban C et al. (2014). In vivo activation of a conserved microRNA program induces mammalian heart regeneration. Cell Stem Cell 15: 589–604.Ali SR, Hippenmeyer S, Saadat LV, Luo L, Weissman IL, Ardehali R (2014). Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. P Natl Acad Sci USA 111: 8850–8855.Andersen DC, Jensen CH, Sheikh SP (2015). Comments to the article “A systematic analysis of neonatal mouse heart regeneration after apical resection”. J Mol Cell Cardiol 82: 59.Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN (2014). Macrophages are required for neonatal heart regeneration. J Clin Invest 124: 1382–1392.Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H et al. (2009). Evidence for cardiomyocyte renewal in humans. Science 324: 98–102.Bersell K, Arab S, Haring B, Kühn B. (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138: 257–270.Bettencourt-Dias M, Mittnacht S, Brockes JP (2003). Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes. J Cell Sci 116: 4001–4009.Bollini S, Smart N, Riley PR (2011). Resident cardiac progenitor cells: at the heart of regeneration. J Mol Cell Cardiol 50: 296–303.Cano-Martínez A, Vargas-González A, Guarner-Lans V, Prado-Zayago E, León-Oleda M, Nieto-Lima B (2010). Functional and structural regeneration in the axolotl heart (Ambystoma mexicanum) after partial ventricular amputation. Arch Cardiol Mexico 80: 79–86.Canseco DC, Kimura W, Garg S, Mukherjee S, Bhattacharya S, Abdisalaam S, Das S, Asaithamby A, Mammen PPA, Sadek HA (2015). Human ventricular unloading induces cardiomyocyte proliferation. J Am Coll Cardiol 65: 892–900.Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, Rojas M, Hammond SM, Schneider MD, Selzman CH et al. (2008). Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. P Natl Acad Sci USA 105: 2111–2116.Chen X, Wilson RM, Kubo H, Berretta RM, Harris DM, Zhang X, Jaleel N, MacDonnell SM, Bearzi C, Tillmanns J et al. (2007). Adolescent feline heart contains a population of small, proliferative ventricular myocytes with immature physiological properties. Circ Res 100: 536–544.Clark LD, Clark RK, Heber-Katz E (1998). A New murine model for mammalian wound repair and regeneration. Clin Immunol Immunop 88: 35–45.Coppola A, Romito A, Borel C, Gehrig C, Gagnebin M, Falconnet E, Izzo A, Altucci L, Banfi S, Antonarakis SE et al. (2014). Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications. Stem Cell Res 12: 323–337.Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A, Pan D (2007). Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130: 1120–1133.Drenckhahn JD, Schwarz QP, Gray S, Laskowski A, Kiriazis H, Ming Z, Harvey RP, Du XJ, Thorburn DR, Cox TC (2008). Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development. Dev Cell 15: 521–533.Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M (2012). Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492: 376–381.Ganem NJ, Cornils H, Chiu SY, O’Rourke KP, Arnaud J, Yimlamai D, Théry M, Camargo FD, Pellman D (2014). Cytokinesis failure triggers Hippo tumor suppressor pathway activation. Cell 158: 833–848.Garbern JC, Lee RT (2013). Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 12: 689–698.Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, Martin JF (2013). Hippo signaling impedes adult heart regeneration. Development 140: 4683–4690.Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF (2011). Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332: 458–461.Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, Ganser A, Knapp WH, Drexler H (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111: 2198–2202.Hsieh PCH, Segers VFM, Davis ME, MacGillivray C, Gannon J, Molkentin JD, Robbins J, Lee RT (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13: 970–974.Jopling C, Sleep E, Raya M, Martí M, Raya A, Izpisúa Belmonte JC (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464: 606–609.Kikuchi K, Holdway JE, Major RJ, Blum N, Dahn RD, Begemann G, Poss KD (2011). Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev Cell 20: 397–404.Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DYR, Poss KD (2010). Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464: 601–605. Korf-Klingebiel M, Reboll MR, Klede S, Brod T, Pich A, Polten F, Napp LC, Bauersachs J, Ganser A, Brinkmann E et al. (2015). Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nat Med 21: 140–149.Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM (2009). Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460: 60–65.Kühn B, del Monte F, Hajjar RJ, Chang YS, Lebeche D, Arab S, Keating MT (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 13: 962–969.Li TS, Cheng K, Lee ST, Matsushita S, Davis D, Malliaras K, Zhang Y, Matsushita N, Smith RR, Marbán E (2010). Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells 28: 2088–2098.Lin Z, Pu WT (2014). Harnessing Hippo in the heart: Hippo/Yap signaling and applications to heart regeneration and rejuvenation. Stem Cell Res 13: 571–581.Lin Z, von Gise A, Zhou P, Gu F, Ma Q, Jiang J, Yau AL, Buck JN, Gouin KA, van Gorp PRR et al. (2014). Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ Res 115: 354–363.Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008). microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Gene Dev 22: 3242–3254.Mahmoud AI, Kocabas F, Muralidhar SA, Kimura W, Koura AS, Thet S, Porrello ER, Sadek HA (2013). Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 497: 249–253.Malliaras K, Makkar RR, Smith RR, Cheng K, Wu E, Bonow RO, Marbán L, Mendizabal A, Cingolani E, Johnston PV et al. (2014). Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol 63: 110–122.Masters M, Riley PR (2014). The epicardium signals the way towards heart regeneration. Stem Cell Res 13: 683–692.Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, Silberstein LE, Dos Remedios CG, Graham D, Colan S et al. (2013). Cardiomyocyte proliferation contributes to heart growth in young humans. P Natl Acad Sci USA 110: 1446–1451.Moroishi T, Hansen CG, Guan KL (2015). The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer 15: 73–79.Naqvi N, Li M, Calvert JW, Tejada T, Lambert JP, Wu J, Kesteven SH, Holman SR, Matsuda T, Lovelock JD et al. (2014). A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell 157: 795–807.Nowbar AN, Mielewczik M, Karavassilis M, Dehbi HM, Shun-Shin MJ, Jones S, Howard JP, Cole GD, Francis DP (2014). Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. Brit Med J 348: g2688.Oberpriller JO, Oberpriller JC (1974). Response of the adult newt ventricle to injury. J Exp Zool 187: 249–253.Olivetti G, Cigola E, Maestri R, Corradi D, Lagrasta C, Gambert SR, Anversa P (1996). Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J Mol Cell Cardiol 28: 1463–1477.Paige SL, Thomas S, Stoick-Cooper CL, Wang H, Maves L, Sandstrom R, Pabon L, Reinecke H, Pratt G, Keller G et al. (2012). A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell 151: 221–232.Pan D (2010). The hippo signaling pathway in development and cancer. Dev Cell 19: 491–505.Pasumarthi KBS (2002). Cardiomyocyte cell cycle regulation. Circ Res 90: 1044–1054.Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, Dorn GW, van Rooij E, Olson EN (2011a). MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 109: 670–679.Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011b). Transient regenerative potential of the neonatal mouse heart. Science 331: 1078–1080.Porrello ER, Olson EN (2014). A neonatal blueprint for cardiac regeneration. Stem Cell Res 13: 556–570.Poss KD, Wilson LG, Keating MT (2002). Heart regeneration in zebrafish. Science 298: 2188–2190.Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, Grinsfelder D, Rothermel BA, Chen R, Garcia JA et al. (2014). The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157: 565–579.Qiao H, Zhang H, Zheng Y, Ponde DE, Shen D, Gao F, Bakken AB, Schmitz A, Kung HF, Ferrari VA et al. (2009). Embryonic stem cell grafting in normal and infarcted myocardium: serial assessment with MR imaging and PET dual detection. Radiology 250: 821–829.Rao PK, Toyama Y, Chiang HR, Gupta S, Bauer M, Medvid R, Reinhardt F, Liao R, Krieger M, Jaenisch R et al. (2009). Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res 105: 585–594.Robledo M (1956). Myocardial regeneration in young rats. Am J Pathol 32: 1215–1239.Rumyantsev PP (1973). Post-injury DNA synthesis, mitosis and ultrastructural reorganization of adult frog cardiac myocytes. An electron microscopic-autoradiographic study. Z Zellforsch Mik Ana 139: 431–50. Sdek P, Zhao P, Wang Y, Huang CJ, Ko CY, Butler PC, Weiss JN, Maclellan WR (2011). Rb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes. J Cell Biol 194: 407–423.Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493: 433–436.Soonpaa MH, Field LJ (1994). Assessment of cardiomyocyte DNA synthesis during hypertrophy in adult mice. Am J Physiol 266: H1439–H1445.Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ (1996). Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 271: H2183–H2189.Tan SC, Gomes RSM, Yeoh KK, Perbellini F, Malandraki-Miller S, Ambrose L, Heather LC, Faggian G, Schofield CJ, Davies KE et al. (2015). Preconditioning of cardiosphere-derived cells with hypoxia or prolyl-4-hydroxylase inhibitors increases stemness and decreases reliance on oxidative metabolism. Cell Tranplant (in press).Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, Snitow M, Morley M, Li D, Petrenko N et al. (2015). A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med 7: 279ra38.Van Berlo JH, Molkentin JD (2014). An emerging consensus on cardiac regeneration. Nat Med 20: 1386–1393.Vargas-González A, Prado-Zayago E, León-Olea M, Guarner-Lans V, Cano-Martínez A (2005). Regeneración miocárdica en Ambystoma mexicanum después de lesión quirúrgica. Arch Cardiol Mexico 75: 21–29 (in Spanish).Von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD et al. (2012). YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. P Natl Acad Sci USA 109: 2394–2399.Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, Ding H, Wylie JN, Pico AR, Capra JA et al. (2012). Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151: 206–220.Wills AA, Holdway JE, Major RJ, Poss KD (2008). Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish. Development 135: 183–192.Witman N, Murtuza B, Davis B, Arner A, Morrison JI (2011). Recapitulation of developmental cardiogenesis governs the morphological and functional regeneration of adult newt hearts following injury. Dev Biol 354: 67–76.Wu CH, Huang TY, Chen BS, Chiou LL, Lee HS (2015). Long-duration muscle dedifferentiation during limb regeneration in axolotls. PLoS One 10: e0116068.Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, McAnally J, Porrello ER, Mahmoud AI, Tan W, Shelton JM et al. (2013). Hippo pathway effector Yap promotes cardiac regeneration. P Natl Acad Sci USA 110: 13839–13844.Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, Richardson JA, Bassel-Duby R, Olson EN (2011). Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal 4: ra70.Yacoub MH (2015). Bridge to recovery and myocardial cell division: a paradigm shift? J Am Coll Cardiol 65: 901–903.Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129: 303–317.Zhao Y, Samal E, Srivastava D (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436: 214–220.