Biosorption of copper lons by caustic treated waste Baker's yeast biomass

Kostikle Muamele Edilmiş Atık Ekmek Mayası Hücrelerine Bakır İyonlarının Biyosorpsiyonu Özet: Bu çalışmada atık ekmek mayası (Saccharomyces cerevisiae) hücreleri $Cu^{+2}$ geri kazanımı için biyosorbant olarak kullanılmıştır. Maya hücreleri NaOH, etil alkol ve ısı ile muamele edilerek biyosorpsiyon kapasiteleri artırılmaya çalışılmış ve bu yöntemler arasında en yüksek bakır kazanımı (21.1 mg $g^{-1}$) ile kostikle muamele edilmiş ekmek mayası hücrelerinden elde edilmiştir. Kostikle muamele edilmiş maya hücreleri ile başlangıç $Cu^{+2}$ konsantrasyonu ve pH'nın biyosorpsiyon üzerine etkisi incelenmiştir. En yüksek $Cu^{+2}$ kazanımı (120.7 mg $g^{-1}$) pH 4.0'da, 198.2 mg $l^{-1}$ başlangıç bakır iyonu konsantrasyonunda elde edilmiştir. Langmuir modeli ve Freundlich denkliği deneysel verilere uygulanmış ve Langmuir modelinin deneysel verilerle daha iyi korelasyon içerisinde olduğu belirlenmiştir. Langmuir sabitleri olan $q_{max}$ (mg $g^{-1}$) ve b (1 $mg^{-1}$) sırasıyla 181.8 ve 0.0312 olarak belirlenmiştir. Kostikle muamele edilmiş maya hücreleri kalsiyum a[jinat jelinde tutuklanmış ve dolgulu yatak kolonda yapılan denemelerde gerçek biyosorpsiyon kapasitesinin aljinat jelinden kaynaklandığı, immobilize maya hücrelerinin ise jelin biyosorpsiyon kapasitesini sadece bir miktar artırdığı belirlenmiştir.

Kostikle muamele edilmiş atık ekmek mayası hücrelerine bakır iyonlarının biyosorpsiyonu

Waste baker's yeast (Saccharomyces cerevisiae) was used as a biosorbent for $Cu^{+2}$biosorption. The yeast cells were treated with caustic soda, ethanol and heat to increase their biosorption capacity. Among the treatment methods used, the highest copper uptake (21.1 mg $g^{-1}$) was obtained with the caustic treatment of baker's yeast. The effect of initial copper concentration and pH on biosorption for caustic treated yeast was studied. The highest $Cu^{+2}$ uptake ( 120.7 mg $g^{-1}$ ) was obtained at pH 4.0, for 198.2 mg $I^{-1}$ initial copper ion concentration. The Langmuir model and Freundlich equation were applied to the experimental data and the Langmuir model was found to be in better correlation with the experimental data. The Langmuir constants were qmax (mg $g^{-1}$) = 181.8 and b (1 $mg^{-1}$) = 0.0312. In packed bed column studies with calcium alginate immobilized caustic treated yeast, it was found that the real biosorption capacity came from the alginate gel and immobilizing caustic treated yeast particles in the gel only slightly increased the biosorption capacity of the gel.

___

  • 1. Aksu Z.. Egretli G., Kutsal, T. A comparative study for the biosorption characteristics of chromium(VI) on Ca-alginate, agarose and immobilized C. vulgaris in a continuous packed bed column. J Environ Sci Health A (34)2: 295-316, 1999.
  • 2. Volesky, B. Biosorption for the next century. International Biohydrometallurgy Symposium, El Escorial, Spain, 1999.
  • 3. Veglio, F., Beolchini F., Gasbarro, A. Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp. Process Biochem 32: 99-105. 1997.
  • 4. Gadd, CM., White, C. Microbial treatment of metal pollution - a working biotechnology? Trends Biotechnol 11: 353-359, 1993.
  • 5 .Volesky, B. Biosorbents for metal recovery. Trends Biotechnol 5:96-101,1987.
  • 6. Volesky, B., Holan Z.R. Biosorption of heavy metals. Biotechnol Progr 11: 235-250, 1.995.
  • 7. Sag, Y., Kutsal, T. The selective biosorption of chromium(Vl) and copper(ll) ions from binary metal mixtures by R. arrhizus. Process Biochem 31: 561-72, 1996.
  • 8. Zouboulis, Al, Rpusou, E.G., Matis, K.A., Hancock, I.C. Removal of toxic metals from aqueous mixtures. Part 1: Biosorption. J Chem Technol Biot 74: 429-36, 1999.
  • 9. Brady, D., Stoll, A., Duncan, J.R. Biosorption of heavy metal cations by non-viable yeast biomass. Environmental Technology 15: 429-38, 1994.
  • 10.Huang, C.P., Huang, C.P., Morehart, A. The removal of Cu (II)from dilute aqueous solutions by Saccharomyces cerevisiae. Wat Res 4: 433-39, 1990.
  • 11.Leusch, A., Holan, Z.R., Volesky, B. Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically-reinforced biomass of marine algae. J Chem Technol Biot 62: 279-288, 1995.
  • 12.Brady, D., Duncan, J.R. Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 34: 149-154, 1994.
  • 13.Engl, A., Kunz, B. Biosorption of heavy metals by Saccharomyces cerevisiae: Effects of nutrient conditions. J Chem Technol Biot 63:257-61, 1995.
  • 14.Lu, Y., Wilkins, E. Heavy metal removal by caustic-treated yeast immobilized in alginate. Journal of Hazardous Materials 49: 165-179, 1996.
  • 15.Volesky, B.A., Mayphillips, H.A. Biosorption of heavy metals by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42: 797-806, 1995.
  • 16.Wilhelmi, B.S., Duncan, J.R. Metal recovery from Saccharomyces cerevisiae columns. Biotech Lett 17: 1007-1012, 1995.
  • 17.Aksu, Z., Acikel, U. A single-staged bioseparation process for simultaneous removal of copper(ll) and chromium(VI) by using C.vulgaris. Process Biochem 34: 589-599, 1999.
  • 18.Kuyucak, N., Volesky, B. Accumulation of cobalt by marine alga.Biotechnol Bioeng 33: 809-814, 1989.
  • 19.Say, R., Denizli, A., Arica, M.Y. Biosorption of cadmium(ll), lead(ll) and copper(ll) with the filamentous fungus Phanerochaete chrysosporium. Bioresource Tech 76: 67-70, 2001.
  • 20.Zhou, J.L, Kiff, RJ. The uptake of copper from aqueous solution by immobilized fungal biomass. J Chem Technol Biot 52: 317-30, 1991.
  • 21.Vecchio, A., Finoli, C, Di Simine, D., Andreoni, V. Heavy metal biosorption by bacterial cells. Fresenius J Ana. Chem 36: 338-42,
  • 22.Yang, J.K., Volesky, B. Cadmium biosorption rate in protonated Sargassum biomass. Environ Sci Technol 33: 751-757, 1998.