Biochemical and in silico evaluation of recombinant E. coli aminopeptidase and in vitro processed human interferon α-2b

Biochemical and in silico evaluation of recombinant E. coli aminopeptidase and in vitro processed human interferon α-2b

Escherichia coli is an extensively used host for the production of recombinant proteins, making its N-terminal methionineaminopeptidase (MAP) an attractive candidate for studies on posttranslational protein processing. The present study describes therecombinant production and properties of MAP from the DH5α strain of E. coli. The soluble and active enzyme was produced in E.coli BL21 (DE3) RIL - codon plus cells under a T7 promoter system and purified by anion-exchange chromatography. It exhibited amolecular weight of 29,200.94 Da by MALDI-TOF analysis. The purified enzyme showed specific activity of 1.64 U/mg with methionylp-nitroanilide and 1.51 U/mg with synthetic tetrapeptide substrate ‘MGMM’ in a discontinuous HPLC-based assay. In vitro studiesshowed the processing of up to 36% of Met-INFα-2b in 40 min. In silico studies revealed that the ES-complex formation between theenzyme and interferon has a ΔG –683.07 kJ/mol. Molecular docking results showed that the processed INFα-2b has greater bindingaffinity with IFNAR2 receptor as indicated by ΔG –784.53 kJ/mol, significantly lower than that of methionine containing INFα-2b(ΔG –717.63 kJ/mol). These findings emphasize the functional superiority or better efficacy of N-terminal methionine processedrecombinant interferon.

___

  • Aksnes H, Drazic A, Arnesen MM (2016). First things first: vital protein marks by n-terminal acetyltransferases. Trends Biochem Sci 41: 746-760.
  • Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, Case DA, Kuntz ID, Rizzo RC (2015). DOCK 6: impact of new features and current docking performance. J Comput Chem 36: 1132-1156.
  • Arfin SM, Bradshaw RA (1988). Cotranslational processing and protein turnover in eukaryotic cells. Biochem 27: 7979-7984.
  • Arif A, Gardner, QAA, Rashid N, Akhtar M (2015). Production of human interferon alpha-2b in Escherichia coli and removal of N-terminal methionine utilizing archaeal methionine aminopeptidase. Biologia 70: 282-287.
  • Arif A, Rashid N, Aslam F, Mahmood N, Akhtar M (2016). Biased expression, under the control of single promoter, of human interferon α-2b and Escherichia coli methionine amino peptidase genes in E. coli, irrespective of their distance from the promoter. Pak J Pharm Sci 29: 375-379.
  • Ben-Bassat A, Bauer K, Chang SY, Myambo K, Boosman A, Chang S (1987). Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J Bacteriol 169: 751-757.
  • Bingel-Erlenmeyer R, Kohler R, Kramer G, Sandikci A, Antolic S, Maier T, Schaffitzel C, Wiedmann B, Bukau B, Ban N (2008). A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing. Nature 452: 108-111.
  • Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254.
  • Calcagno S1, Klein CD (2016). N-Terminal methionine processing by the zinc-activated Plasmodium falciparum methionine aminopeptidase 1b. Appl Microbiol Biotechnol 100: 7091- 7102.
  • Cantu-Bustos J, Kevin ED, Villar CD, Vargas-Cortez T, MoronesRamirez JR, Balderas-Renteria I, Zarate X (2016). Recombinant protein production data after expression in the bacterium Escherichia coli. Data in Brief 7: 502-508.
  • Chen A, Sun Y, Zhang W, Peng F, Zhan C, Liu M, Yang Y, Bai Z (2016). Downsizing a pullulanase to a small molecule with improved soluble expression and secretion efficiency in Escherichia coli. Microb Cell Fact 15: 9.
  • Chill JH, Quadt SR, Levy R, Schreiber G, Anglister J (2003). The human type I interferon receptor: NMR structure reveals the molecular basis of ligand binding. Structure 11: 791-802.
  • De Weerd NA, Samarajiwa SA, Hertzog PJ (2007). Type I interferon receptors: biochemistry and biological functions. J Biol Chem 282: 20053-20057.
  • Dolores DNM, Ortiz A (2016). Enzyme replacement therapy for Fabry disease. J Inborn Errors Metabol Screen 4: 1-7.
  • Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G (2015). Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25: 113-119.
  • Giglione C, Boularot A, Meinnel T (2004). Protein N-terminal methionine excision. Cell Mol Life Sci 61: 1455-1474.
  • Goh HC, Sobota RM, Ghadessy FJ, Nirantar S (2017). Going native: complete removal of protein purification affinity tags by simple modification of existing tags and proteases. Prot Exp Purification 129: 18-24.
  • Gull I, Samra ZQ, Aslam MS (2013). Heterologous expression, immunochemical and computational analysis of recombinant human interferon alpha 2b. SpringerPlus 2: 264.
  • Helgren TR, Wangtrakuldee P, Staker BL, Hagen TJ (2016). Advances in bacterial methionine aminopeptidase inhibition. Curr Top Med Chem 16: 397-414.
  • Jia B, Jeon CO (2016). High-throughput recombinant protein expression in Escherichia coli: status and future perspectives. Open Biol 6: 160196.
  • Kanodia JS, Kim Y, Tomer R, Khan Z, Chung K, Storey JD, Lu H, Keller PJ, Shvartsman SY (2011). A computational statistics approach for estimating the spatial range of morphogen gradients. Development 138: 4867-4874.
  • Karlberg H, Lindegren G, Mirazimi A (2010). Comparison of antiviral activity of recombinant and natural interferons against Crimean-Congo hemorrhagic fever virus. Open Virol J 4: 38.
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
  • Lagasse HA, Levin DD, Hengel H, Golding B, Sauna ZE (2017). Fcfusion drugs have C1q/FcγR binding and signaling properties that can affect their immunogenicity. J Immunol 198: 129.13.
  • Liao YD, Jeng DJ, Wang CF, Wang SC, Chang ST (2004). Removal of N-terminal methionine from recombinant proteins by engineered E. coli methionine aminopeptidase. Protein Sci 13: 1802-1810.
  • Lovell SC, Davis IW, Arendall WB, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson GC (2002). Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins: Structure, Function & Genetics 50: 437-450.
  • Lowether WT, Matthews BW (2000). Structure and function of the methionine aminopeptidases. Biochim Biophys Acta 1477: 157-167.
  • Lowther WT, Zhang Y, Sampson PB, Honek JF, Matthews BW (1999). Insights into the mechanism of Escherichia coli methionine aminopeptidase from the structural analysis of reaction products and phosphorus-based transition-state analogues. Biochem 38: 14810-14819.
  • Macindoe G, Mavridis L, Venkatraman V, Devignes MD, Ritchie DW (2010). HexServer: an FFT-based protein-docking server powered by graphics processors. Nucleic Acid Res 38: W445-W449.
  • Mann M, Jensen ON (2003). Proteomic analysis of post-translational modifications. Nat Biotechnol 2: 255-261.
  • Miljic D, Miljic P, Doknic M, Pekic S, Stojanovic M, Cvijovic G, Micic D, Popovic V (2013). Growth hormone replacement normalizes impaired fibrinolysis: new insights into endothelial dysfunction in patients with hypopituitarism and growth hormone deficiency, Growth Horm IGF Res 23: 243-248.
  • Mitra S, Dygas-Holz AM, Jiracek J, Zertova M, Zakova L, Holz RC (2006). A new colorimetric assay for methionyl aminopeptidases: examination of the binding of a new class of pseudo peptide analogue inhibitors. Anal Biochem 357: 43-49.
  • Mukovozov I, Sabljic T, Hortelano G, Ofosu FA (2008). Factors that contribute to the immmunogenicity of therapeutic recombinant human proteins. Thromb Haemost 100: 874-882.
  • Nudelman I, Akabayov SR, Schnur E, Biron Z, Levy R, Xu Y, Anglister J (2010). Intermolecular interactions in a 44 kDa interferon - receptor complex detected by asymmetric reverse-protonation and two-dimensional NOESY. Biochem 49: 5117-5133.
  • Rider P, Carmi Y, Cohen I (2016). Biologics for targeting inflammatory cytokines, clinical uses, and limitations. Int J Cell Biol Article ID 9259646: 11.
  • Seal BS (2013). Characterization of bacteriophages virulent for Clostridium perfringens and identification of phage lytic enzymes as alternatives to antibiotics for potential control of the bacterium. Poult Sci 92: 526-533.
  • Shepelkova G, Evstifeev V, Majorov K, Bocharova I, Apt A (2016). Therapeutic effect of recombinant mutated interleukin 11 in the mouse model of tuberculosis. J Infect Dis 214: 496-501.
  • Tripathi NK (2016). Production and purification of recombinant proteins from Escherichia coli. Chem BioEng Rev 3: 116-133.
  • Urbano F, Acquafredda A, Aceto G, Penza R, Cavallo L (2012). Unusual pediatric co-morbility: autoimmune thyroiditis and cortico-resistant nephrotic syndrome in a 6-month-old Italian patient. Ital J Pediatr 38: 57.
  • Vairo F, Netto C, Dorneles A, Mittelstadt S, Wilke M, Doneda D, Michelin K, Ribeiro CB, Quevedo A, Vieira T et al. (2013). Enzyme replacement therapy in a patient with Gaucher disease type III: a paradigmatic case showing severe adverse reactions started a long time after the beginning of treatment. JIMD Rep 11: 1-6.
  • Vasina JA, Baneyx F (1996). Recombinant protein expression at low temperatures under the transcriptional control of the major Escherichia coli cold shock promoter cspA. Appl Environ Microbiol 62: 1444-1447.
  • Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003). LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 21: 289-307.
  • Wingfield PT (2017). N-terminal methionine processing. Curr Protoc Protein Sci 88: 6141-6143.
  • Xiao Q, Zhang F, Nacev BA, Liu JO, Pei D (2010). Protein N-terminal processing substrate specificity of Escherichia coli and human methionine aminopeptidases. Biochem 49: 5588-5599.
  • Ya LJ, Cui YM, Chen LL, Gu M, Li J, Nan FJ, Ye QZ (2003). Mutations at the S1 sites of methionine aminopeptidases from Escherichia coli and Homo sapiens reveal the residues critical for substrate specificity. Biochem Biophys Res Comm 307: 172.
  • Yang J, Zhang Y (2015). I-TASSER server: new development for protein structure and function predictions. Nucleic Acid Res 43: W174-W181.
  • Zhou Y, Guo XC, Yi T, Yoshimoto T, Pei D (2000). Two continuous spectrophotometric assays for methionine aminopeptidase. Analytic Biochem 280: 159-65.