Analyzing formation of silver nanoparticles from the filamentous fungus Fusarium oxysporum and their antimicrobial activity

Analyzing formation of silver nanoparticles from the filamentous fungus Fusarium oxysporum and their antimicrobial activity

In recent years much attention has been paid to the biosynthesis of silver nanoparticles (AgNPs) and their important medicalapplications. The current study employs Fusarium oxysporum for the formation of silver nanoparticles and examines the antimicrobialactivity of the particles against some multidrug-resistant (MDR) microbes. Silver nitrate was transformed into silver oxide, formingwell-dispersed nanoparticles, by the action of F. oxysporum metabolically. The size of the nanoparticles ranged from 21.3 to 37.3 nm,and UV-spectroscopy showed a peak at 408–411 nm. Moreover, SEM, TEM, and AFM results revealed spherical and oval shapes andshowed no sign of aggregation. Furthermore, the FT-IR histogram detected amide I and amide II, which are responsible for the stabilityof AgNPs in the aqueous solution. The AgNPs halted the growth of MDR bacteria, including some members of Enterobacteriaceae andStaphylococcus species at a concentration of 50% (v/v). The AgNPs also have the ability to inhibit pathogenic yeasts Candida albicans andCandida krusei. The AgNPs displayed antigrowth activity against MDR microbes, suggesting that they might be potential alternativesto antibiotics. However, additional studies may be necessary to substantiate the fact that the benefits of using nanoparticles outweighthe potential risks.

___

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surface B 28: 313-318.
  • Ahmad M, Al-Salhi MS, Siddiqui MKJ (2010). Silver nanoparticles applications and human health. Clin Chim Acta 411: 1841- 1848.
  • Basavaraja SS, Balaji SD, Lagashetty AK, Rajasab AH, Venkataraman A (2008). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43: 1164-1170.
  • Busi S, Rajkumari J, Karuganti S, Ranjan B (2014). Green rapid biogenic synthesis of bioactive silver nanoparticles (AgNPs) using Pseudomonas aeruginosa. IET Nanobiotechnol 8: 267- 274.
  • Chaturvedi S, Dave PN, Shah NK (2012). Applications of nanocatalyst in new era. J Saudi Chem Soc 16: 307-325.
  • Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotech 3: 8.
  • Feng QL, Wu J, Chen GQ (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52: 662-668.
  • Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015). Silver nanoparticles as potential antibacterial agents. Molecules 20: 8856-8874.
  • Gadd GM (2007). Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111: 3-49.
  • Gopinath PM, Narchonai G, Dhanasekaran D, Ranjani A, Thajuddin N (2015). Mycosynthesis, characterization and antibacterial properties of AgNPs against multidrug resistant (MDR) bacterial pathogens of female infertility cases. Asian J Pharm Sci 10: 138-145.
  • Gurunathan S, Jeong JK, Han JW, Zhang XF, Park JH, Kim JH (2015). Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res Lett 10: 35.
  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, Hariharan N, Eom SH (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloid Surface B 74: 328- 335.
  • Hamedi S, Shojaosadati SA, Shokrollahzadeh S, Hashemi-Najafabadi S (2014). Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity. World J Microbiol Biotechnol 30: 693-704.
  • Ishida K, Cipriano TF, Rocha GM, Weissmuller I, Gomes F, Miranda K, Rozental S (2014). Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticles characterization and analysis of antifungal activity against pathogenic yeasts. Mem Inst Oswaldo Cruz 109: 220-228.
  • Jagnow J, Clegg S (2003). Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology 149: 2397-2405.
  • Kowalczyk B, Lagzi I, Grzybowski BA (2011). Nanoseparations: strategies for size and/or shape-selective purification of nanoparticles. Curr Opin Colloid In 16: 135-148.
  • Kumar CMK, Yugandhar P, Savithramma N (2016). Biological synthesis of silver nanoparticles from Adansonia digitata L. fruit pulp extract, characterization, and its antimicrobial properties. J Intercult Ethnopharmacol 5: 79.
  • Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, ArellanoJiménez MJ, Jose-Yacaman M (2015). Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnol 13: 91.
  • Luna C, Barriga-Castro ED, Gómez-Treviño A, Núñez NO, MendozaReséndez R (2016). Microstructural, spectroscopic, and antibacterial properties of silver-based hybrid nanostructures biosynthesized using extracts of coriander leaves and seeds. Int J Nanomedicine 11: 4787.
  • Majeed S, bin Abdullah MS, Nanda A, Ansari MT (2016). In vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999). Journal of Taibah University for Science 10: 614- 620.
  • Mishra A, Tripathy SK, Yun S (2011). Biosynthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J Nanosci Nanotechnol 11: 243-248.
  • Mohanpuria P, Rana NK, Yadav SK (2008). Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10: 507-517.
  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002). Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Bio Chem 3: 461-463.
  • Otto M (2009). Staphylococcus epidermidis-the “accidental” pathogen. Nat Rev Microbiol 7: 555-567.
  • Periasamy S, Nair HAS, Lee KWK, Ong J, Goh JQJ, Kjelleberg S, Rice SA (2015). Pseudomonas aeruginosa PAO1 exopolysaccharides are important for mixed species biofilm community development and stress tolerance. Front Microbiol 6: 851.
  • Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Nagy E, Dobiasova S (2008). Candida krusei, a multidrug-resistant opportunistic fungal pathogen: Geographic and temporal trends from the ARTEMIS DISK antifungal surveillance program, 2001 to 2005. J Clin Microbiol 46: 515-521.
  • Prabhu S, Poulose EK (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2: 32.
  • Rai M, Yadav A, Gade A (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27: 76-83.
  • Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012). Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112: 841-852.
  • Rodríguez-León E, Iñiguez-Palomares R, Navarro RE, HerreraUrbina R, Tánori J, Iñiguez-Palomares C, Maldonado A (2013). Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res Lett 8: 318.
  • Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, Reidl J, Schild S (2015). Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Medical Microbiol 305: 85-95.
  • Sanyasi S, Majhi RK, Kumar S, Mishra M, Ghosh A, Suar M, Satyam PV, Mohapatra H, Goswami C, Goswami L (2016). Polysaccharidecapped silver nanoparticles inhibit biofilm formation and eliminate multidrug- resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci Rep 6: 24929.
  • Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar KB, Venkataraman A (2008). Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, F. semitectum. Sci Technol Adv Mater 9: 035012.
  • Seshadri S, Saranya K, Kowshik M (2011). Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Prog 27: 1464-1469.
  • Soni N, Prakash S (2012). Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110: 175-184.
  • Wei X, Luo M, Lietal W (2012). Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3 . Bioresour Technol 103: 273-278.
  • Xue B, He D, Gao S, Wang D, Yokoyama K, Wang L (2016). Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int J Nanomedicine 11: 1899.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK