Adoptive T-cell therapies to overcome T cell-dependent immune dysregulations in COVID-19

Adoptive T-cell therapies to overcome T cell-dependent immune dysregulations in COVID-19

Coronavirus disease 2019 (COVID-19) pandemic has been an important global interest that affected millions of people, and it requires a deep investigation of the disease immunology for developing further therapeutic applications. Adoptive T cell therapy promises to address T cell-dependent immune dysregulation in COVID-19 patients by the generation of specific T cell clones against virus-specific antigens. Additionally, targeting B cell-dependent protection through COVID-19 vaccines, which have been developed in the recent year, possessed sufficient prevention for spreading the virus, since the cases and deaths related to COVID-19 tend to decrease after the vaccination. However, adoptive cell therapies are now encouraging scientists to deal with pathological challenges like inadequate T cell-dependent immune response or lymphopenia, since they are the most frequent outcome of severe infection, especially in immunocompromized patients. In this review, the current knowledge of immunopathology of COVID-19 was aimed to be highlighted along with the T cell responses against SARS-CoV-2 to comprise a basis for therapeutics. Moreover, current therapeutics and treatment strategies for COVID-19 were discussed to evaluate possible agents. Furthermore, the use of adoptive T cell therapy representing an emerging therapeutic approach was purposed to be presented comprehensively against SARS-CoV-2 infection. Even though further studies are needed to fully understand T cell response against SARS-CoV-2 in order to develop therapies to provide long term and efficient protection, adoptive cell therapies now meet the demand for a large population of people who suffer immunocompromization, considering the previous usage of the technique for different infectious diseases.

___

  • Agerer B, Koblischke M, Gudipati V, Montaño-Gutierrez LF, Smyth M et al. (2021). SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8+ T cell responses. Science Immunology 6 (57): 6461. doi: 10.1126/SCIIMMUNOL.ABG6461
  • Altmann DM, Boyton RJ (2020). SARS-CoV-2 T cell immunity: Specificity, function, durability, and role in protection. In Science Immunology American Association for the Advancement of Science 5 (49): 6160.
  • Bachanova V, Bishop MR, Dahi P, Dholaria B, Grupp SA et al. (2020). Chimeric Antigen Receptor T Cell Therapy During the COVID-19 Pandemic. Biology of Blood and Marrow Transplantation 26 (7): 1239–1246.
  • Barker H, Parkkila S (2020). Bioinformatic characterization of angiotensin-converting enzyme 2, the entry receptor for SARS-CoV-2. PLoS ONE 15 (10): e0240647.
  • Basar R, Daher M, Rezvani K (2020). Next-generation cell therapies: the emerging role of CAR-NK cells. Hematology: The American Society of Hematology Education Program 2020 (1): 570. doi: 10.1182/HEMATOLOGY.2020002547
  • Basar R, Uprety N, Ensley E, Daher M, Klein K et al. (2021). Generation of glucocorticoid-resistant SARS-CoV-2 T cells for adoptive cell therapy. Cell Reports 36 (3): 109432. doi: 10.1016/J.CELREP.2021.109432
  • Bates TA, Leier HC, Lyski ZL, Goodman JR, Curlin ME et al. (2021). Age-Dependent Neutralization of SARS-CoV-2 and P.1 Variant by Vaccine Immune Serum Samples. JAMA doi: 10.1001/JAMA.2021.11656
  • Bertoletti A, Tan AT (2020). Challenges of CAR- and TCR-T cell– based therapy for chronic infections. Journal of Experimental Medicine 217 (5): e20191663. doi: 10.1084/JEM.20191663
  • Bertoletti A, Tan AT, Le Bert N (2021). The T-cell response to SARSCoV-2: kinetic and quantitative aspects and the case for their protective role. Oxford Open Immunology 2 (1): iqab006. doi: 10.1093/OXFIMM/IQAB006
  • Bilich T, Nelde A, Heitmann JS, Maringer Y, Roerden M et al. (2021). T cell and antibody kinetics delineate SARS-CoV-2 peptides mediating long-term immune responses in COVID-19 convalescent individuals. Science Translational Medicine 13 (590): 7517. doi: 10.1126/SCITRANSLMED.ABF7517
  • Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D et al. (2020). Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 181 (5): 1036-1045.e9.
  • Bourgonje AR, Abdulle AE, Timens W, Hillebrands J, Navis GJ et al. (2020). Angiotensin‐converting enzyme 2 (ACE2), SARS‐ CoV‐2 and the pathophysiology of coronavirus disease 2019 (COVID‐19). The Journal of Pathology 251 (3): 228–248.
  • Brunetta E, Folci M, Bottazzi B, De Santis M, Gritti G et al. (2021). Macrophage expression and prognostic significance of the long pentraxin PTX3 in COVID-19. Nature Immunology 22 (1): 19–24.
  • Caccamo N, Sullivan LC, Brooks AG, Dieli F (2020). Harnessing HLA-E-restricted CD8 T lymphocytes for adoptive cell therapy of patients with severe COVID-19. In British Journal of Haematology 190 (4): e185–e187.
  • Chan JD, Lai J, Slaney CY, Kallies A, Beavis PA et al. (2021). Cellular networks controlling T cell persistence in adoptive cell therapy. Nature Reviews Immunology 2021: 1–16. doi: 10.1038/s41577- 021-00539-6
  • Chee J, Loh WS, Liu Z, Mullol J Wang DY et al. (2021). ClinicalPathological Correlation of the Pathophysiology and Mechanism of Action of COVID-19 — a Primer for Clinicians. Current Allergy and Asthma Reports 2021 21 (6): 1–10. doi: 10.1007/S11882-021-01015-W
  • Chen Z, John Wherry E (2020). T cell responses in patients with COVID-19. Nature Reviews Immunology 20: 529–536.
  • Cooper RS, Fraser AR, Smith L, Burgoyne P, Imlach SN et al. (2021). Rapid GMP-Compliant Expansion of SARS-CoV-2–Specific T Cells From Convalescent Donors for Use as an Allogeneic Cell Therapy for COVID-19. Frontiers in Immunology 2021 (11): doi: 10.3389/FIMMU.2020.598402
  • Crooke SN, Ovsyannikova IG, Kennedy RB, Poland GA (2020). Immunoinformatic identification of B cell and T cell epitopes in the SARS-CoV-2 proteome. Scientific Reports 10 (1): 14179.
  • Cui D, Tang Y, Jiang Q, Jiang D, Zhang Y et al. (2021). Follicular Helper T Cells in the Immunopathogenesis of SARSCoV-2 Infection. Frontiers in Immunology 12. doi: 10.3389/ FIMMU.2021.731100
  • Dai W, Rao R, Sher A, Tania N, Musante CJ et al. (2021). A Prototype QSP Model of the Immune Response to SARS‐CoV‐2 for Community Development. CPT: Pharmacometrics and Systems Pharmacology 10 (1): 18–29.
  • Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED et al. (2021). Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 371 (6529): doi: 10.1126/ SCIENCE.ABF4063
  • de Candia P, Prattichizzo F, Garavelli S, Matarese G (2021). T Cells: Warriors of SARS-CoV-2 Infection. Trends in Immunology 42 (1): 18–30. doi: 10.1016/J.IT.2020.11.002
  • Diao B, Wang C, Tan Y, Chen X, Liu Y et al. (2020). Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Frontiers in Immunology 11: 827.
  • DiPiazza AT, Graham BS, Ruckwardt TJ (2021). T cell immunity to SARS-CoV-2 following natural infection and vaccination. Biochemical and Biophysical Research Communications 538: 211. doi: 10.1016/J.BBRC.2020.10.060
  • Dwivedi A, Karulkar A, Ghosh S, Rafiq A, Purwar R (2019). Lymphocytes in Cellular Therapy: Functional Regulation of CAR T Cells. Frontiers in Immunology 18 (9): 3180. doi: 10.3389/FIMMU.2018.03180
  • Edara VV, Norwood C, Floyd K, Lai L, Davis-Gardner ME et al. (2021). Infection- and vaccine-induced antibody binding and neutralization of the B.1.351 SARS-CoV-2 variant. Cell Host & Microbe 29 (4): 516-521.e3. doi: 10.1016/J.CHOM.2021.03.009
  • Ellis GI, Sheppard NC, Riley JL (2021). Genetic engineering of T cells for immunotherapy. Nature Reviews Genetics 2021 22 (7): 427–447. doi: 10.1038/s41576-021-00329-9
  • Esmaeilzadeh A, Elahi R (2021). Immunobiology and immunotherapy of COVID‐19: A clinically updated overview. Journal of Cellular Physiology 236 (4): 2519–2543.
  • Eyre DW, Lumley SF, Wei J, Cox S, James T et al. (2021). Quantitative SARS-CoV-2 anti-spike responses to Pfizer–BioNTech and Oxford–AstraZeneca vaccines by previous infection status. Clinical Microbiology and Infection 27 (10): 1516.e7-1516.e14. doi: 10.1016/J.CMI.2021.05.041
  • Fathi N, Rezaei N (2020). Lymphopenia in COVID‐19: Therapeutic opportunities. Cell Biology International 44 (9): 1792–1797.
  • Favresse J, Bayart J-L, Mullier F, Elsen M, Eucher C et al. (2021). Antibody titres decline 3-month post-vaccination with BNT162b2. Emerging Microbes & Infections 10 (1): 1495– 1498. doi: 10.1080/22221751.2021.1953403
  • Felsenstein S, Herbert JA, McNamara PS, Hedrich CM (2020). COVID-19: Immunology and treatment options. Clinical Immunology 215 (April): 108448.
  • Ferreras C, Pascual-Miguel B, Mestre-Durán C, Navarro-Zapata A, Clares-Villa L et al. (2021). SARS-CoV-2-Specific Memory T Lymphocytes From COVID-19 Convalescent Donors: Identification, Biobanking, and Large-Scale Production for Adoptive Cell Therapy. Frontiers in Cell and Developmental Biology 25 (9): 620730. doi: 10.3389/FCELL.2021.620730
  • Gallagher KME, Leick MB, Larson RC, Berger TR, Katsis K et al. (2021). SARS -CoV-2 T-cell immunity to variants of concern following vaccination. BioRxiv doi: 10.1101/2021.05.03.442455
  • Garcia-Beltran WF, Lam EC, Denis K St, Nitido AD, Garcia ZH et al. (2021). Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 184 (9): 2372- 2383.e9. doi: 10.1016/J.CELL.2021.03.013
  • Gavriatopoulou M, Ntanasis-Stathopoulos I, Korompoki E, Fotiou D, Migkou M et al. (2020). Emerging treatment strategies for COVID-19 infection. Clinical and Experimental Medicine 2020 21 (2): 167–179. doi: 10.1007/S10238-020-00671-Y
  • Genc AB, Yaylaci S, Dheir H, Genc AC, İssever K et al. (2021). The predictive and diagnostic accuracy of long Pentraxin-3 in COVID-19 Pneumonia. Turkısh Journal of Medical Sciences 51: 448-453. doi: 10.3906/sag-2011-32
  • Gerhards C, Thiaucourt M, Kittel M, Becker C, Ast V et al. (2021). Longitudinal assessment of anti-SARS-CoV-2 antibody dynamics and clinical features following convalescence from a COVID-19 infection. International Journal of Infectious Diseases 107: 221–227. doi: 10.1016/J.IJID.2021.04.080
  • Goel RR, Apostolidis SA, Painter MM, Mathew D, Pattekar A et al. (2021). Distinct antibody and memory B cell responses in SARSCoV-2 naïve and recovered individuals following mRNA vaccination. Science Immunology 6 (58): 1–19. doi: 10.1126/ SCIIMMUNOL.ABI6950
  • Golchin A (2020). Cell-Based Therapy for Severe COVID-19 Patients: Clinical Trials and Cost-Utility. In Stem Cell Reviews and Reports Springer 17: 56–62.
  • Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM et al. (2020). Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals Cell 181 (7): 1489-1501.e15.
  • Gujar S, Pol JG, Kim Y, Kroemer G (2020). Repurposing CD8 + T cell immunity against SARS-CoV-2 for cancer immunotherapy: a positive aspect of the COVID-19 pandemic? OncoImmunology 9 (1): 1794424.
  • Haddadi MH, Hajizadeh-Saffar E, Khosravi-Maharlooei M, Basiri M, Negahdari B et al. (2020). Autoimmunity as a target for chimeric immune receptor therapy: A new vision to therapeutic potential. Blood Reviews 41: 100645. doi: 10.1016/J.BLRE.2019.100645
  • Harrison AG, Lin T, Wang P (2020). Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends in Immunology 41 (12): 1100–1115.
  • Hayes C (2020). Cellular immunotherapies for cancer. Irish Journal of Medical Science 190 (1): 41–57. doi: 10.1007/S11845-020- 02264-W
  • Jarjour N, Masopust D, Jameson S (2021). T Cell Memory: Understanding COVID-19. Immunity 54 (1): 14–18. doi: 10.1016/J.IMMUNI.2020.12.009
  • Johansen MD, Irving A, Montagutelli X, Tate MD, Rudloff I et al. (2020). Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunology 13 (6): 877- 891. doi: 10.1038/s41385-020-00340-z
  • Kaplon H, Reichert JM (2021). Antibodies to watch in 2021. 13 (1): 1860476. doi: 10.1080/19420862.2020.1860476
  • Keller MD, Harris KM, Jensen-Wachspress MA, Kankate VV, Lang H et al. (2020). SARS-CoV-2–specific T cells are rapidly expanded for therapeutic use and target conserved regions of the membrane protein. Blood 136 (25): 2905–2917. doi: 10.1182/BLOOD.2020008488
  • Knies A, Ladage D, Braun RJ, Kimpel J, Schneider M (2021). Persistence of humoral response upon SARS-CoV-2 infection. Reviews in Medical Virology e2272. doi: 10.1002/RMV.2272
  • Kumar M, Al Khodor S (2020). Pathophysiology and treatment strategies for COVID-19. Journal of Translational Medicine 18 (1): 353.
  • Laidlaw BJ, Craft JE, Kaech SM (2016). The multifaceted role of CD4+ T cells in CD8+ T cell memory. Nature Reviews Immunology 16 (2): 102–111. doi: 10.1038/nri.2015.10
  • Le Bert N, Clapham HE, Tan AT, Chia WN, Tham CYL et al. (2021). Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. The Journal of Experimental Medicine 218 (5): e20202617. doi: 10.1084/ JEM.20202617
  • Letko M, Marzi A, Munster V (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology 5 (4): 562–569. doi: 10.1038/s41564-020-0688-y
  • Leung W, Soh TG, Linn YC, Low JG-H, Loh J et al. (2020). Rapid production of clinical-grade SARS-CoV-2 specific T cells. Advances in Cell and Gene Therapy 3 (4): e101. doi: 10.1002/ ACG2.101
  • Luo X, Zhu Y, Mao J, Du R (2020). T cell immunobiology and cytokine storm of COVID‐19. Scandinavian Journal of Immunology e12989.
  • MacKay M, Afshinnekoo E, Rub J, Hassan C, Khunte M et al. (2020). The therapeutic landscape for cells engineered with chimeric antigen receptors. Nature Biotechnology 2020 38 (2): 233–244. doi: 10.1038/s41587-019-0329-2
  • Mathew D, Giles JR, Baxter AE, Oldridge DA, Greenplate AR et al. (2020). Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 369 (6508): eabc8511.
  • Merad M, Martin JC (2020). Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. In Nature Reviews Immunology Nature Research 20 (6): 355– 362.
  • Millet JK, Jaimes JA, Whittaker GR (2021). Molecular diversity of coronavirus host cell entry receptors. FEMS Microbiology Reviews 45 (3): 1–16. doi: 10.1093/FEMSRE/FUAA057
  • Monzavi SM, Naderi M, Ahmadbeigi N, Kajbafzadeh A-M, Muhammadnejad S (2021). An outlook on antigen-specific adoptive immunotherapy for viral infections with a focus on COVID-19. Cellular Immunology 367: 104398. doi: 10.1016/J. CELLIMM.2021.104398
  • Nelde A, Bilich T, Heitmann JS, Maringer Y, Salih HR et al. (2020). SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nature Immunology 2020 22 (1): 74–85. doi: 10.1038/s41590-020-00808-x
  • Neurath MF (2021). COVID-19: biologic and immunosuppressive therapy in gastroenterology and hepatology. Nature Reviews Gastroenterology & Hepatology 2021: 1–11. doi: 10.1038/ s41575-021-00480-y
  • Parasher A (2020). COVID-19: Current understanding of its pathophysiology, clinical presentation and treatment. Postgraduate Medical Journal 97 (1147): 312-320.
  • Patel S, Saxena B, Mehta P (2021). Recent updates in the clinical trials of therapeutic monoclonal antibodies targeting cytokine storm for the management of COVID-19. Heliyon 7 (2): e06158.
  • Phan AT, Gukasyan J, Arabian S, Wang S, Neeki MM (2021). Emergent Inpatient Administration of Casirivimab and Imdevimab Antibody Cocktail for the Treatment of COVID-19 Pneumonia. Cureus 13 (5): e15280. doi: 10.7759/ CUREUS.15280
  • Rha MS, Jeong HW, Ko JH, Choi SJ, Seo IH et al. (2021). PD-1- Expressing SARS-CoV-2-Specific CD8+ T Cells Are Not Exhausted, but Functional in Patients with COVID-19. Immunity 54 (1): 44-52.e3.
  • Rodda LB, Netland J, Shehata L, Pruner KB, Morawski PA et al. (2021). Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell 184 (1): 169-183.e17.
  • Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM et al. (2020). Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell 183 (4): 996-1012.e19. doi: 10.1016/J. CELL.2020.09.038
  • Sardar R, Satish D, Birla S, Gupta D (2020). Integrative analyses of SARS-CoV-2 genomes from different geographical locations reveal unique features potentially consequential to host-virus interaction, pathogenesis and clues for novel therapies. Heliyon 6 (9): e04658. doi: 10.1016/j.heliyon.2020.e04658
  • Seif M, Einsele H, Löffler J (2019). CAR T Cells Beyond Cancer: Hope for Immunomodulatory Therapy of Infectious Diseases. Frontiers in Immunology 21 (10): 2711. doi: 10.3389/ FIMMU.2019.02711
  • Sengupta S (2020). The story of COVID-19: A comparative analysis. Science Translational Medicine 12 (547): eabc8943. doi: 10.1126/scitranslmed.abc8943
  • Sette A, Crotty S (2021). Adaptive immunity to SARS-CoV-2 and COVID-19. In Cell 184 (4): 861–880.
  • Shen X, Tang H, McDanal C, Wagh K, Fischer W et al. (2021). SARSCoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host & Microbe 29 (4): 529-539.e3. doi: 10.1016/J.CHOM.2021.03.002
  • Song JW, Zhang C, Fan X, Meng FP, Xu Z et al. (2020). Immunological and inflammatory profiles in mild and severe cases of COVID-19. Nature Communications 11 (1): 1–10.
  • Souza WM, Amorim MR, Sesti-Costa R, Coimbra LD, Brunetti NS et al. (2021). Neutralisation of SARS-CoV-2 lineage P.1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARS-CoV-2 vaccine: an immunological study. The Lancet Microbe 2 (10): e527-e535. doi: 10.1016/S2666-5247(21)00129-4
  • Sridhar S, Nicholls J (2021). Pathophysiology of infection with SARS-CoV-2—What is known and what remains a mystery. Respirology 26 (7): 652–665. doi: 10.1111/RESP.14091
  • Stratton CW, Tang YW, Lu H (2021). Pathogenesis-directed therapy of 2019 novel coronavirus disease. Journal of Medical Virology 93 (3): 1320–1342.
  • Swadling L, Maini MK (2020). T cells in COVID-19 — united in diversity. In Nature Immunology 21 (11): 1307–1308.
  • Tas SK, Kirkik D, Işik ME, Kalkanli N, Uzunoglu AS et al. (2020). Role of ACE2 Gene Expression in Renin Angiotensin System and Its Importance in Covid-19: In Silico Approach. Brazilian Archives of Biology and Technology 63: 2020.
  • Tauzin A, Nayrac M, Benlarbi M, Gong SY, Gasser R et al. (2021). A single dose of the SARS-CoV-2 vaccine BNT162b2 elicits Fc-mediated antibody effector functions and T cell responses. Cell Host & Microbe 29 (7): 1137-1150.e6. doi: 10.1016/J. CHOM.2021.06.001
  • Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP (2020). The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology 20 (6): 363–374.
  • To KK-W, Sridhar S, Chiu KH-Y, Hung DL-L, Li X et al. (2021). Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic. Emerging Microbes & Infections 10 (1): 507–535. doi: 10.1080/22221751.2021.1898291
  • Toor SM, Saleh R, Sasidharan Nair V, Taha RZ, Elkord E (2021). T-cell responses and therapies against SARS-CoV-2 infection. Immunology 162 (1): 30–43.
  • Urbanowicz RA, Tsoleridis T, Jackson HJ, Cusin L, Duncan JD et al. (2021). Two doses of the SARS-CoV-2 BNT162b2 vaccine enhance antibody responses to variants in individuals with prior SARS-CoV-2 infection. Science Translational Medicine 13 (609): 847. doi: 10.1126/SCITRANSLMED.ABJ0847
  • Vardhana SA, Wolchok JD (2020). The many faces of the antiCOVID immune response. Journal of Experimental Medicine 217 (6): e20200678. doi: 10.1084/jem.20200678
  • Voelker R (2020). CAR-T Therapy Is Approved for Mantle Cell Lymphoma. JAMA 324 (9): 832–832. doi: 10.1001/ JAMA.2020.15456
  • Wang P, Casner RG, Nair MS, Wang M, Yu J et al. (2021). Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host & Microbe 29 (5): 747-751.e4. doi: 10.1016/J.CHOM.2021.04.007
  • Wang P, Nair MS, Liu L, Iketani S, Luo Y et al. (2021). Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593: 130–135. doi: 10.1038/s41586-021-03398-2
  • Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO et al. (2021). mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 592: 616–622. doi: 10.1038/ s41586-021-03324-6
  • World Health Organization. Weekly epidemiological update on COVID-19 - 9 November 2021. Retrieved November 15, 2021, from https://www.who.int/publications/m/item/weeklyepidemiologic al-update-on-covid-19 - -9-november-2021
  • Weiskopf D, Schmitz KS, Raadsen MP, Grifoni A, Okba NMA et al. (2020). Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Science Immunology 5 (48): eabd2071.
  • Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC (2020). Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA - Journal of the American Medical Association 324 (8): 782–793.
  • Shah M, Woo HG (2021). Molecular Perspectives of SARS-CoV-2: Pathology, Immune Evasion, and Therapeutic Interventions. Molecules and Cells 44 (6): 408–421. doi: 10.14348/ MOLCELLS.2021.0026
  • Xiao K, Yang H, Liu B, Pang X, Du J et al. (2021). Antibodies Can Last for More Than 1 Year After SARS-CoV-2 Infection: A Follow-Up Study From Survivors of COVID-19. Frontiers in Medicine 16 (8): 684864. doi: 10.3389/FMED.2021.684864
  • Yao XH, Li TY, He ZC, Ping YF, Liu HW et al. (2020). A pathological report of three COVID-19 cases by minimally invasive autopsies. Chinese Journal of Pathology 49 (5): 411-417.
  • Zhang J, He Q, An C, Mao Q, Gao F et al. (2021). Boosting with heterologous vaccines effectively improves protective immune responses of the inactivated SARS-CoV-2 vaccine. 10 (1): 1598–1608. doi: 10.1080/22221751.2021.1957401
  • Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T et al. (2020). VirusReceptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. Cell Host & Microbe 28 (4): 586-601. e6.
  • Zhu L, Yang P, Zhao Y, Zhuang Z, Wang Z et al. (2020). Single-Cell Sequencing of Peripheral Mononuclear Cells Reveals Distinct Immune Response Landscapes of COVID-19 and Influenza Patients. Immunity 53 (3): 685-696.e3. doi: 10.1016/j. immuni.2020.07.009
  • Zmievskaya E, Valiullina A, Ganeeva I, Petukhov A, Rizvanov A et al. (2021). Application of car-t cell therapy beyond oncology: Autoimmune diseases and viral infections. Biomedicines 9 (1): 1–13.