Effects of moderate high temperature and UV-B on accumulation of withanolides and relative expression of the squalene synthase gene in Physalis peruviana

Physalis peruviana L. (Cape gooseberry) is a source for a variety of phytocompounds such as withanolides, withanone, withaferin A, and withanolide A. These withanolides are high-value drug candidates due to their various pharmacological properties. To meet the increasing demands for these compounds, plant cell technology offers a reliable alternative. Exogenous addition of elicitors is considered the most effective strategy for enhanced production of secondary metabolites. In this study, we investigated changes in withanolide accumulation and characterized the gene expression level changes of squalene synthase enzyme in P. peruviana shoot cultures exposed to mild nonlethal heat stress (45 degrees C for 2 and 5 h) and UV-B radiation (313 nm for 15 min and 3 h). We demonstrated significant changes in withanolide content with 7.86- and 12.5-fold increases for 2- and 5-hmild high-temperature exposure times, respectively. Exposure to UV-B also changed the withanolide content by 7.22- and 7-fold increases for 15 min and 3 h exposure times, respectively. The relative expression level of squalene synthase gene showed consistent results with1.80- and 10.13-fold increases in withanolide for 2- and 5-h mild high-temperature exposure times, and 1.34- and 2.01-fold increases with 15 min and 3 h UV-B exposure times, respectively.

___

  • Afreen F, 2005, PLANT PHYSIOL BIOCH, V43, P1074, DOI 10.1016/j.plaphy.2005.11.005
  • Binder BYK, 2009, BIOTECHNOL PROGR, V25, P861, DOI 10.1002/btpr.97
  • Chaurasiya ND, 2012, PLANT CELL REP, V31, P1889, DOI 10.1007/s00299-012-1302-4
  • Cirak C, 2012, ACTA PHYSIOL PLANT, V34, P1313, DOI 10.1007/s11738-012-0928-8
  • Eichholz I, 2011, FOOD CHEM, V126, P60, DOI 10.1016/j.foodchem.2010.10.071
  • Galli V, 2016, LWT-FOOD SCI TECHNOL, V73, P693, DOI 10.1016/j.lwt.2016.07.001
  • Gerhardt KE, 2008, PHOTOCHEM PHOTOBIOL, V84, P1445, DOI 10.1111/j.1751-1097.2008.00362.x
  • GLOTTER E, 1991, NAT PROD REP, V8, P415, DOI 10.1039/np9910800415
  • Grover A, 2013, J BIOSCI BIOENG, V115, P680, DOI 10.1016/j.jbiosc.2012.12.011
  • Gulen H, 2004, PLANT SCI, V166, P739, DOI 10.1016/j.plantsci.2003.11.014
  • Jansen MAK, 2008, PLANT SCI, V175, P449, DOI 10.1016/j.plantsci.2008.04.010
  • Jenkins GI, 2009, ANNU REV PLANT BIOL, V60, P407, DOI 10.1146/annurev.arplant.59.032607.092953
  • Katoch M, 2011, J NAT MED-TOKYO, V65, P578, DOI 10.1007/s11418-010-0491-9
  • Kim OT, 2009, PLANT CELL TISS ORG, V98, P25, DOI 10.1007/s11240-009-9535-9
  • Kim YS, 2011, PLANTA, V233, P343, DOI 10.1007/s00425-010-1292-9
  • Kitchlu S, 2011, IND CROP PROD, V33, P584, DOI 10.1016/j.indcrop.2010.12.010
  • Kumar A, 2007, GENET RESOUR CROP EV, V54, P655, DOI 10.1007/s10722-006-9129-x
  • Kumar A, 2011, PLANT SYST EVOL, V291, P141, DOI 10.1007/s00606-010-0372-4
  • Kumari R., 2013, SUSTAIN AGR REV, V12, P225, DOI DOI 10.1007/978-94-007-5961-9_8
  • Kumari R, 2011, ACTA PHYSIOL PLANT, V33, P1093, DOI 10.1007/s11738-010-0637-0
  • Lancaster JE, 2000, J HORTIC SCI BIOTECH, V75, P142, DOI 10.1080/14620316.2000.11511213
  • Lee MH, 2004, PLANT CELL PHYSIOL, V45, P976, DOI 10.1093/pcp/pch126
  • Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  • Mir BA, 2013, IND CROP PROD, V45, P442, DOI 10.1016/j.indcrop.2012.12.023
  • Mirjalili MH, 2011, BIOL PLANTARUM, V55, P357, DOI 10.1007/s10535-011-0054-2
  • Mirjalili MH, 2009, MOLECULES, V14, P2373, DOI 10.3390/molecules14072373
  • Mishra L C, 2000, Altern Med Rev, V5, P334
  • Morales LO, 2010, TREE PHYSIOL, V30, P923, DOI 10.1093/treephys/tpq051
  • Neugart S, 2014, J AGR FOOD CHEM, V62, P4054, DOI 10.1021/jf4054066
  • Obata T, 2012, CELL MOL LIFE SCI, V69, P3225, DOI 10.1007/s00018-012-1091-5
  • Patel N, 2015, PLANT CELL TISS ORG, V122, P409, DOI 10.1007/s11240-015-0778-3
  • Radman R, 2003, BIOTECHNOL APPL BIOC, V37, P91, DOI 10.1042/BA20020118
  • Ramakrishna A, 2011, PLANT SIGNAL BEHAV, V6, P1720, DOI 10.4161/psb.6.11.17613
  • Schreiner M, 2012, CRIT REV PLANT SCI, V31, P229, DOI 10.1080/07352689.2012.664979
  • Schreiner M, 2009, INNOV FOOD SCI EMERG, V10, P93, DOI 10.1016/j.ifset.2008.10.001
  • Selmar D, 2013, PLANT CELL PHYSIOL, V54, P817, DOI 10.1093/pcp/pct054
  • Seo JW, 2005, PHYTOCHEMISTRY, V66, P869, DOI 10.1016/j.phytochem.2005.02.016
  • Sung DY, 2003, TRENDS PLANT SCI, V8, P179, DOI 10.1016/S1360-1385(03)00047-5
  • Takshak S, 2014, BIOL PLANTARUM, V58, P328, DOI 10.1007/s10535-014-0390-0
  • Thimmaraju R, 2003, PROCESS BIOCHEM, V38, P1069, DOI 10.1016/S0032-9592(02)00234-0
  • Tozawa R, 1999, J BIOL CHEM, V274, P30843, DOI 10.1074/jbc.274.43.30843
  • Uchida H, 2009, PLANTA, V229, P1243, DOI 10.1007/s00425-009-0906-6
  • VOGELI U, 1988, PLANT PHYSIOL, V88, P1291, DOI 10.1104/pp.88.4.1291
  • Wang Y, 2011, AFR J BIOTECHNOL, V10, P6481
  • WEATHERS PJ, 1990, CURR PLANT SCI BIOT, V9, P582
  • Wentzinger LF, 2002, PLANT PHYSIOL, V130, P334, DOI 10.1104/pp.004655
  • Yucesan BB, 2015, TURK J AGRIC FOR, V39, P797, DOI 10.3906/tar-1412-86
  • Zhang WJ, 2009, FITOTERAPIA, V80, P207, DOI 10.1016/j.fitote.2009.02.006
  • Zhao J, 2005, BIOTECHNOL ADV, V23, P283, DOI 10.1016/j.biotechadv.2005.01.003