The effect of silicon phthalocyanine on cell death and mitochondrial membrane potential in pancreatic cancer cells

The effect of silicon phthalocyanine on cell death and mitochondrial membrane potential in pancreatic cancer cells

Silicon (SiPcs) phthalocyanines are advantageous because they do not aggregate due to their special structural features. Therefore, they have been widely used in a range of areas in chemical and biological technology. One of the common applications is the use of phthalocyanines on cancer therapies. Pancreas cancer is one of the most common cancers with a high rate of mortality around the world. In this study we therefore aimed to investigate the potential of SiPcs molecules which we previously synthesized for the first time, on increased cell death and the effect on mitochondrial activity in pancreatic cancer cells. The results showed the significantly selective cytotoxic effect of SiPc on cancer cells compared to normal cells. Mitochondrial membrane potential was not different in cancer cells but in normal cells after SiPcs treatment. Pre-incubation time (24h) of SiPcs before light irradiation induced more significant cytotoxicity in pancreatic cancer cells but not in normal cells compared to prolonged pre-incubation (48). This study revisited the biological function of previously synthesized SiPcs, and the results conclude the cytotoxic activity of SiPcs on pancreas cancer. These preliminary findings can be extended for other cancer types and detailed with in vivo models in the future.

___

  • [1]L. Kilmmert, D. Haarer,PresentLimits of Data Storage using Dye Molecules in Solid Matrices,Advanced Mater, 7, 1995, 495.
  • [2] J.W. Gardner, M.Z. Iskandari, B. Bott, Effect of electrodegeometry on gas sensitivity of lead phthalocyanine thin films,SensorsandActuators B: Chemical, 9, 1992, 133.
  • [3] R. Rellaa, A. Rzzob, A. Licciullic, P. Sicilianoa, L. Troisid, L. Vallic,Tests in controlledatmosphere on new optical gas sensing layers based on TiO2/metal phthalocyanine hybrid system, Materials Science and Engineering: C, 22, 2002, 439.
  • [4] F.Z. Henari,Optical switching in organometallic phthalocyanine, Journal of Optics A: Pureand Applied Optics, 3, 2001, 188.
  • [5] M. A. El Sallam, H.M. Mallah, D.G. Damhogi, E. Elesh, Thermal Analysis, DielectricResponseandElectricalConductivity of SiliconPhthalocyanineDichloride (SiPcCl 2 ) ThinFilms, Journal of Electronic Materials, 50, 2021, 562-570.
  • [6] I. Omeroglu, M. Goksel, V. Kussovski, V. Mantareva, M. Durmus, NovelWater-SolubleSilicon(IV) PhthalocyanineforPhotodynamicTherapyandAntimicrobialInactivations, Macroheterocycles, 12 , 2019,255-263.
  • [7] G. Dilber, A. Nas, Z. Bıyıklıoglu, New octa-benzothiazolesubstituted metal freeandmetallophthalocyanines: Synthesis, characterizationandelectrochemicalstudies, TurkishJournal of AnalyticalChemistry, 3, 2021, 33-38.
  • [8] E. Bagda, Therecentstudiesabouttheinteraction of phthalocyanineswith DNA, TurkishJournal of AnalyticalChemistry, 3, 2021, 9-18.
  • [9] G. Sarkı, H. Yalazan, H. Kantekin, Synthesisandaggregationproperties of 2,9,16,23–tetrakis(chloro)-3,10,17,24–tetrakis[2-(4-allyl-2-methoxyphenoxy)ethoxy]phthalocyaninatocobalt(II), manganese(III), zinc(II) , TurkishJournal of AnalyticalChemistry, 2, 2020, 75-80.
  • [10]Y. Caglar, E.T. Saka, A novelsiliconephthalocyanineforthepreconcentrationandspectrophotometricdetermination of copperbyionicliquid-baseddispersiveliquid-liquidmicroextraction, TurkishJournal of AnalyticalChemistry, 1, 2019.
  • [11] E.T.Saka, H. Yalazan, Z. Bıyıklıoglu, H. Kantekin, K. Tekintas, Synthesis, aggregation, photocatalyticalandelectrochemicalproperties of axially 1-benzylpiperidin-4-oxy unitssubstitutedsiliconphthalocyanine, JournalofMolecularStructure, 1199,2020,126994.
  • [12] J. Huang, V. Lok, C. H.Ngai, L. Zhang, J. Yuan, X. Q. Lao, K. Ng, C.Chong, Z.J. Zheng, M. C S Wong, WorldwideBurden of, Risk Factorsfor, andTrends in PancreaticCancer, Gastroenterology, 160(3), 2021, 744-754.
  • [13] L. B. OliveiradeSiqueira, A.P. Santos Matos, M. R. MattosdaSilva, S. RochaPinto, R. S. Oliveira, E. R. Júnior,Pharmaceuticalnanotechnologyappliedtophthalocyaninesforthepromotion of antimicrobialphotodynamictherapy: A literaturereview, PhotodiagnosisandPhotodynamicTherapy, 39, (2022), 102896.
  • [14] C. Sarı, A. Nalçaoğlu, İ. Değirmencioğlu, F. Celep Eyüboğlu, Tumor-selectivenewpiperazine-fragmentedsiliconphthalocyaninesinitiatecelldeath in breastcancercelllines, Journal of PhotochemistryandPhotobiology B: Biology, 216, (2021), 112143.
  • [15] E.C. Aniogo, B.P.A. George, H. Abrahamse, PhthalocyanineinducedphototherapycoupledwithDoxorubicin; a promisingnoveltreatmentforbreastcancer, ExpertReview of AnticancerTheraphy, 17, (2017), 693-702.
  • [16] Q. Cui, S. Wen, P. Huang, Targetingcancercellmitochondria as a therapeuticapproach: recentupdates, FutureMedicinalChemistry, 9, (2017), 929-949.
  • [17]M. J. Stillman, T. Nyokong, Phthalocyanines: Propertiesand Applications, Editor: C. C. Leznoff, 1989, USA, VCH Publishers.
  • [18] D.D. Perrin, W.L.F. Armarego, Purification of LaboratoryChemicals, second ed., PergamonPress, Oxford, 1989.
  • [19] S. Celik-Uzuner, E. Birinci, S. Tetikoğlu, C. Birinci, S. Kolaylı, DistinctEpigeneticReprogramming, MitochondrialPatterns, Cellular Morphology, andCytotoxicityafterBeeVenomTreatment, RecentPatents on Anti-CancerDrugDiscovery, 16.3 (2021), 377-392.
  • [20] K. Mitra, M. C. T. Hartman, Siliconphthalocyanines: synthesisandresurgentapplications, OrganicandBiomolecularChemistry, 6, (2021), 1168-1190.
  • [21]Q. Liu, M.P. Mang, S.H. Tan, J. Wang, Q.L. Chen, K. Wang, W.J. Wu, Z.Y. Hong, Potent peptide-conjugatedsiliconphthalocyaninesfortumorphotodynamictherapy,Journal of Cancer, 9, (2018) 310-320.
  • [22] K. Li, W.Y. Dong, Q.Z. Liu, G.C. Lv, M.H. Xie, X.C. Sun, L. Qui, J.G. Lin, Journal of Photochemistry and Photobiology B-Biology, 190, (2019) 1-7.
  • [23] P. Sen, T. Nyokong, A novel axially palladium(II)-Schiff base complexsubstitutedsilicon(IV) phthalocyanine: Synthesis, characterization, photophysicochemical properties and photodynamic antimicrobial chemotherapy activityagainstStaphylococcusaureus, Polyhedron, 173, (2019) 114135.
  • [24] W.Y. Dong, K. Li, S.J. Wang, L. Qui, M.H. Xie, J.G. Lin, Current Pharmaceutical Chemistry, 22, (2021) 414-422.
  • [25] J.P. Taquet, C. Frochot, V. Manneville, M. Heyop-Barberi, Phthalocyaninescovalentlyboundtobiomoleculesfor a targeted photodynamic therapy, Current medicinal Chemistry, 14, (2007) 1673-1687.
  • [26] B. Aru, A. Günay, E. Senkuytu, G. Yanıkkaya-Demirel, A.G. Gürek, D. Atilla, A TranslationalStudy of a SiliconPhthalocyanineSubstitutedwith a HistoneDeacetylaseInhibitorforPhotodynamicTherapy, ACS Omega, 40, (2020) 25854–25867.
  • [27] J. Schmidt, W. Kuzyniak, J. Berkholz, G. Steinemann, R. Ogbodu, B. Hoffmann, G. Nouailles, A.G. Gürek, B. Nitzsche, M. Höpfner, Novelzinc andsilicon phthalocyanines as photosensitizersforphotodynamictherapy of cholangiocarcinoma, International Journal ofMolecularMedicine, 42, (2018) 534-546.
  • [28] B. Zhang, D. Wang, F. Guo, C. Xuan, Mitochondrialmembranepotentialandreactiveoxygenspecies in cancerstemcells, FamCancer, 14(1), (2015) 19-23.
  • [29] S.M. Malahingam, J.D.Ordaz, P.S. Low, Targeting of a PhotosensitizertotheMitochondrionEnhancesthePotency of PhotodynamicTherapy, ACS Omega, 6, (2018) 6066–6074.
  • [30] A. Al Fraj, A.S. Shaik, S. Afzal, S. Al-Muhsen, R. Halwani, Specifictargetingandnoninvasivemagneticresonanceimaging of an asthmabiomarker in thelungusingpolyethyleneglycolfunctionalizedmagneticnanocarriers, Contrast Media andMolecularImaging, 11, (2016) 172-183.
  • [31] K. Mitra, M. Samso, C.E. Lyons, M.C.T. Hartman, Hyaluronicacidgraftednanoparticles of a platinum(ii)–silicon(iv) phthalocyanineconjugatefortumorandmitochondria-targetedphotodynamictherapy in redlight, Journal of MaterialsChemistry B, 6 (2018) 7373-7377.
Turkish Journal of Analytical Chemistry-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2019
  • Yayıncı: Miraç OCAK
Sayıdaki Diğer Makaleler

A Simple and High Throughput Methodology for Simultaneous Determination of Levodopa and Carbidopa

İrem KIRLANGIÇ, Kemal Volkan ÖZDOKUR, Fatma Nil ERTAS

Determination of LC-MS/MS phenolic profile, antioxidant and α-glucosidase enzyme inhibition activities of Linum mucronatum Bertol. subsp. armenum (Bordz.) P.H.Davis

Fatma KILIÇ, Zeynep AKAR

The effect of silicon phthalocyanine on cell death and mitochondrial membrane potential in pancreatic cancer cells

Hakkı İsmail KAYA, Ceren BOGUSLU, Esra KABAK, Cagla AKKOL, Ece Tuğba SAKA, Selcen ÇELİK UZUNER

Investigation of Interaction of Bismarck Brown Y- Palladium Complex with AS1411 G-quadruplex Aptamer

Esra BAĞDA, Rümeysa DURAK, Efkan BAĞDA, Didem DUMAN, Ebubekir AYHAN

Fast pyrolysis of fig leaves: influence of pyrolysis parameters and characterization of bio-oil

Turgay KAR, Sedat KELEŞ, Zafer EMİR, Kamil KAYGUSUZ

Electrochemical and liquid chromatographic analysis of triamcinolone acetonide in pharmaceutical formulations

Nuray DENİZHAN, Selehattin YILMAZ, Gülşen SAĞLIKOĞLU, Emrah KILINÇ, Çiğdem YENGİN, Fatma Gülay DER

Determination of Ethylenediaminetetraacetic acid (EDTA) levels in surface waters by high performance liquid chromatography (HPLC)-Ultraviolet/Visible (UV/VIS) detector

Oltan CANLI, Barış GÜZEL, Kartal ÇETİNTÜRK

Electroanalytical Analysis of Guaifenesin from Pharmaceuticals on Boron Doped Diamond Electrode

Fatma AĞIN, Gökçe ÖZTÜRK, Dilek KUL

Development and validation of RPLC method for the simultaneous analysis of ACE inhibitors in tablet formulations

Erdem KUZUCANLI, Ebru ÇUBUK DEMİRALAY, Yaşar Doğan DALDAL, Zehra ÜSTÜN, İlkay KONÇE, Abbase Güleren ALSANCAK

Heavy Metal Pollution from Listvenitization: In Case of Alakeçi (Bayramiç-Çanakkale/West Türkiye)

Alaaddin VURAL