Schiff bases carrying dipicolylamine groups for selective determination of metal ions in aqueous media. A phenanthrene-based fluorescent sensor for Hg2+ determination

Schiff bases carrying dipicolylamine groups for selective determination of metal ions in aqueous media. A phenanthrene-based fluorescent sensor for Hg2+ determination

Abstract: Four new dipicolylamine compounds carrying anthracene, naphthalene, pyrene and phenanthrene groups were synthesized, and their ion sensor properties were studied by means of emission spectrometry in ethanol-water (1:1). It was disclosed that among a series of studied anions and cations, only with Cd2+, Zn2+, Cu2+ and Hg2+ cations, ligands formed complexes selectively. With spectrofluorimetric measurements, the complexation stoichiometry and the complex stability constants of the formed complexes were determined. A linear range from 0.10 µg L-1 to0.15 mg L-1 where the fluorescence intensity of the phenanthrene derivative compound showed a regular decrease with the increase of the Hg2+ ion concentration was obtained. The method developed for the determination of Hg2+ was applied to tap water samples. In order to eliminate the matrix effect, a modified standard addition method was used. Detection and quantification limits were 0.009 mg L-1 and 0.027 mg L-1, respectively.

___

  • 1. L.M. Plum, L. Rink, H. Hajo. Int. J. Environ. The Essential Toxin: Impact of Zinc on Human Health. Res. Public Health.2010;7(4):1342-1365
  • 2. B. Fernandes Azevedo, L. Barros Furieri, F.M. Peçanha, G.A. Wiggers, P. Frizera Vassallo, M. Ronacher Simões, J. Fiorim, P. Rossi de Batista, M. Fioresi, L. Rossoni. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems.J. Biomed. Biotechnol. 2012. DOI: 10.1155/2012/949048.
  • 3. H. Refiker, M. Merdivan, R.S. Aygun. Selective Preconcentration of Gold from Ore Samples. Int. J. Anal. Chem., 2018, 7503202.
  • 4. M.R. Ganjali, L.H Babaei, A. Badiei, K. Saberian, S. Behbahani, G. M. Ziarani, M. Salavati- Niasari.A novel method for fast enrichment and monitoring of hexavalent and trivalent chromium at the ppt level with modified silica MCM-41 and its determination by inductively coupled plasma optical emission spectrometry. Química Nova.2006;29(3):440-443. 5. K. Pyrzynska, T. Wierzbicki. Solid-Phase Extraction for Preconcentration and Separation of Vanadium Species in Natural Waters. Microchim Acta. 2004;147(1-2):59-64.
  • 6. I.L. Alcantara, P.S. Roldan, G.R Castro, F.V. Moraes, F.A. Silva, C.C. Padilha, J.D. Oliveira, P.M. Padilha. Determination of Cadmium in River Water Samples by Flame AAS after On-line Preconcentration in Mini-Column Packed with 2-Aminothiazole-modified Silica Gel. Anal. Sci. 2004; 20(7):1029-1032. 7. V.A. Lemos, L.O. Dos Santos. A new method for preconcentration and determination of mercury in fish, shellfish and saliva by cold vapour atomic absorption spectrometry. Food Chem. 2014;149: 203-207.
  • 8. M. Ali. Preconcentration and Determination of Trace Amounts of Heavy Metals in Water Samples Using Membrane Disk and Flame Atomic Absorption Spectrometry. Chinese J. Chem., 2007;25(5): 640-644.
  • 9. N. Altunay, R. Gürkan. A simple and efficient approach for preconcentration of some heavy metals in cosmetic products before their determinations by flame atomic absorption spectrometry. Turk. J. Chem. 2016, 40: 988–1001.
  • 10. B. Valeur, I. Leray. Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 2000; 205(1):3-40.
  • 11. L.G. Pathberiya, N. Barlow, T. Nguyen, B. Graham, K.L. Tuck. Facile, divergent route to bis-Zn(II)dipicolylamine type chemosensors for pyrophosphate. Tetrahedron. 2012;68(46): 9435-9439.
  • 12. J.H. Kim, J.Y. Noh, I.H. Hwang, J. Kang, J. Kim, C. Kim. An anthracene-based fluorescent chemosensor for Zn2+ Tetrahedron Lett. 2013;54(19): 2415-2418. 13. A. Coskun, M. Deniz Yilmaz, E.U. Akkaya. An acenaphthopyrrolone-dipicolylamine derivative as a selective and sensitive chemosensor for group IIB cationsTetrahedron Lett. 2006; 47(22) :3689-3691.
  • 14. H. Lee, R.D. Hancock, H.S. Lee. Role of Fluorophore–Metal Interaction in Photoinduced Electron Transfer (PET) Sensors: Time-Dependent Density Functional Theory (TDDFT) Study. J. Phys. Chem. A. 2013; 117(50): 13345-13355.15. A. Ojida, Y. Mito-Oka, M.A. Inoue, I. Hamachi. First Artificial Receptors and Chemosensors toward Phosphorylated Peptide in Aqueous Solution. J. Am. Chem. Soc. 2002; 124(22):6256-6255 16. K.H. Chen, J.S. Yang, C.Y. Hwang, J.M. Fang. Phospholipid-Induced Aggregation and Anthracene Excimer Formation. Org. Lett. 2008; 10(20): 4401-4404.
  • 17. T. Sakamoto, A. Ojida, I. Hamachi. Molecular recognition, fluorescence sensing, and biological assay of phosphate anion derivatives using artificial Zn(II)–Dpa complexes. Chem. Commun. (Camb). 2009;(2):141-152.
  • 18. J.F. Zhang, S. Kim, J.H. Han, S.J. Lee, T. Pradhan, Q.Y. Cao, S.J. Lee, C. Kang, J.S. Kim. Pyrophosphate-Selective Fluorescent Chemosensor Based on 1,8-Naphthalimide–DPA–Zn(II) Complex and Its Application for Cell Imaging.Org. Lett. 2011;13(19): 5294-5297.19. S. Watanabe, K. Ohtsuka, S. Sato, S. Takenaka. Discrimination of phosphorylated double stranded DNA by naphthalene diimide having zinc(II) dipicolylamine complexes. Bioorganic Med. Chem. 2011; 19(3): 1361-1365.
  • 20. M.J. Kim, K.M.K. Swamy, K.M. Lee, A.R. Jagdale, Y. Kim, S.-J. Kim, K.H. Yoo, J. Yoon. Pyrophosphate selective fluorescent chemosensors based on coumarin–DPA–Cu(II) complexes. Chem. Commun. (Camb). 2009;(46): 7215-7217.
  • 21. J. Hatai, S. Bandyopadhyay, Chem. Commun. (Camb). Altered selectivity of a dipicolylamine based metal ion receptor. 2014; (50): 64-66.
  • 22. S.K. Lee, M.G. Choi, J. Choi, S.K. Chang. Fluorescence signaling of Zn2+ levels in synthetic urine by dipicolylamine-armed hydroxynaphthalimide. Sensors Actuators, B Chem.2015; 207: 303-307.
  • 23. K. Komatsu, Y. Urano, H. Kojima, T. Nagano, J. Am. Development of an Iminocoumarin-Based Zinc Sensor Suitable for Ratiometric Fluorescence Imaging of Neuronal Zinc Chem. Soc.2007;129(44):13447-13454.
  • 24. E. Vanlı, M.N. Mısır, H. Alp, T. Ak, N. Özbek, Ü. Ocak, M. Ocak. Ion Sensor Properties of Fluorescent Schiff Bases Carrying Dipicolylamine Groups. A Simple Spectrofluorimetric Method to Determine Cu (II) in Water Samples. J. Fluoresc. 2017; 27(5): 1759-1766.
  • 25. J. Bourson, B. Valeur. Ion-responsive fluorescent compounds. 2. Cation-steered intramolecular charge transfer in a crowned merocyanine. J. Phys. Chem. 1989; 93(9): 3871-3876.
  • 26. A. Başoğlu, G. Tosun, M. Ocak, H. Alp, N. Yaylı, Ü. Ocak. Simple Time-Saving Method for Iron Determination Based on Fluorescence Quenching of an Azaflavanon-3-ol Compound. J. Agric. Food Chem. 2015; 63(10): 2654-2659.
  • 27. Y. Çağlar, E.T. Saka, H. Alp, H. Kantekin, Ü. Ocak, M. Ocak. A Simple Spectrofluorimetric Method Based on Quenching of a Nickel(II)-Phthalocyanine Complex to Determine Iron (III). J. Fluoresc. 2016; 26(4): 1381-1389.
  • 28. M. Ocak, T. Ak, A. Aktaş, N. Özbek, O.C.Çağılcı, A. Gümrükçüoğlu, H. Kantekin, Ü. Ocak, H. Alp. Metal Complexation Properties of Schiff Bases Containing 1,3,5-Triazine Derived from 2-Hydroxy-1-Naphthaldehyde in Solution. A Simple Spectrofluorimetric Method to Determine Mercury (II). J. Fluoresc.2017; 27(1): 59-68.
  • 29. N. Özbek, H. Alp, G. Çelik, T. Ak, O.C. Çağılcı, N. Yaylı, Ü. Ocak, M. Ocak. A SimpleSpectrofluorimetric Method for Iron Determination with a Chalcone-Based Schiff Base. J. Fluoresc. 2017; 27(2): 635-641.
  • 30. M.P. Hay, K.O. Hicks, K. Pchalek, H.H. Lee, A. Blaser, F.B. Pruijn, R.F Anderson, S.S. Shinde, W.R. Wilson, W.A. Denny. Tricyclic [1,2,4] Triazine 1,4-Dioxides As Hypoxia Selective Cytotoxins J. Med.Chem. 2008; 51(21): 6853-6865.
  • 31. J.R. Lakowicz. Principles of Fluorescence Spectroscopy, Kluwer, New York, 1999.