Preparation and characterization of flexible and free-standing CuS/rGO composite paper

Preparation and characterization of flexible and free-standing CuS/rGO composite paper

A flexible, free-standing and durable CuS/reduced graphene oxide (rGO) composite paper electrode was prepared with a simple electrochemical deposition of CuS structures on the surface of the rGO paper electrode. CuS/rGO composite paper electrode was characterized by using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The morphological characterization displayed that the surface of the rGO paper electrode was covered with ball-like CuS structures. Microstructures of rGO and CuS/rGO papers and the intensity of surface defects were compared with Raman spectra. Electrochemical studies exhibited that as-prepared CuS/GO composite paper electrode has very high electrochemical activity.

___

  • References [1] K.D. Kıranşan, E. Topçu, M. Alanyalıoğlu, Surface-confined electropolymerization of pyronin Y in the graphene composite paper structure for the amperometric determination of dopamine, J. Appl. Polym. Sci. 134 (2017). doi:10.1002/app.45139.
  • [2] K. Daʇcl, M. Alanyalloʇlu, Preparation of Free-Standing and Flexible Graphene/Ag Nanoparticles/Poly(pyronin Y) Hybrid Paper Electrode for Amperometric Determination of Nitrite, ACS Appl. Mater. Interfaces. 8 (2016) 2713–2722. doi:10.1021/acsami.5b10973.
  • [3] E. Topçu, K. Dağcı, M. Alanyalıoğlu, Free-standing Graphene/Poly(methylene blue)/AgNPs Composite Paper for Electrochemical Sensing of NADH, Electroanalysis. 28 (2016) 2058–2069. doi:10.1002/elan.201600108.
  • [4] E. Topcu, K.D. Kiransan, Flexible and Free-standing PtNLs-MoS2/Reduced Graphene Oxide Composite Paper: A High-Performance Rolled Paper Catalyst for Hydrogen Evolution Reaction, Chemistryselect. 3 (2018) 5941–5949. doi:10.1002/slct.201800500.
  • [5] K.D. Kıranşan, E. Topçu, Graphene Paper with Sharp-edged Nanorods of Fe−CuMOF as an Excellent Electrode for the Simultaneous Detection of Catechol and Resorcinol, Electroanalysis. 31 (2019) 2518–2529. doi:10.1002/elan.201900352.
  • [6] K. Dağcı Kıranşan, M. Aksoy, E. Topçu, Flexible and freestanding catalase-Fe3O4/reduced graphene oxide paper: Enzymatic hydrogen peroxide sensor applications, Mater. Res. Bull. 106 (2018) 57–65. doi:10.1016/j.materresbull.2018.05.032.
  • [7] J.K. Lee, K.B. Smith, C.M. Hayner, H.H. Kung, Silicon nanoparticles-graphene paper composites for Li ion battery anodes, Chem. Commun. 46 (2010) 2025–2027. doi:10.1039/b919738a.
  • [8] E. Topçu, K. Dağcı Kıranşan, Flexible gold nanoparticles/rGO and thin film/rGO papers: novel electrocatalysts for hydrogen evolution reaction, J. Chem. Technol. Biotechnol. 94 (2019) 3895–3904. doi:10.1002/jctb.6187.
  • [9] K. Chi, Z. Zhang, J. Xi, Y. Huang, F. Xiao, S. Wang, Y. Liu, Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor, ACS Appl. Mater. Interfaces. 6 (2014) 16312–16319. doi:10.1021/am504539k.
  • [10] K.D. Kıranşan, E. Topçu, Free-standing and Flexible MoS2/rGO Paper Electrode for Amperometric Detection of Folic Acid, Electroanalysis. 30 (2018) 810–818. doi:10.1002/elan.201700778.
  • [11] E. Topçu, K.D. Kıranşan, Diamond & Related Materials Electrochemical simultaneous sensing of melatonin and ascorbic acid at a novel flexible B-RGO composite paper electrode, Diam. Relat. Mater. 105 (2020) 107811. doi:10.1016/j.diamond.2020.107811.
  • [12] E. Topçu, Three-dimensional, free-standing, and flexible cobalt-based metal-organic frameworks/graphene composite paper: A novel electrochemical sensor for determination of resorcinol, Mater. Res. Bull. 121 (2020) 110629. doi:10.1016/j.materresbull.2019.110629.
  • [13] K.D. Kıranşan, Preparation and Characterization of Highly Flexible, Free-Standing, Three-Dimensional and Rough NiMOF/rGO Composite Paper Electrode for Determination of Catechol, ChemistrySelect. 4 (2019) 6488–6495. doi:10.1002/slct.201900974.
  • [14] H. Li, Y. Wang, J. Huang, Y. Zhang, J. Zhao, Microwave-assisted Synthesis of CuS/Graphene Composite for Enhanced Lithium Storage Properties, Electrochim. Acta. 225 (2017) 443–451. doi:10.1016/j.electacta.2016.12.117.
  • [15] J.T. Cao, Y.X. Dong, Y. Ma, B. Wang, S.H. Ma, Y.M. Liu, A ternary CdS@Au-g-C3N4 heterojunction-based photoelectrochemical immunosensor for prostate specific antigen detection using graphene oxide-CuS as tags for signal amplification, Anal. Chim. Acta. 1106 (2020) 183–190. doi:10.1016/j.aca.2020.01.067.
  • [16] A.A. Sagade, R. Sharma, Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature, Sensors Actuators, B Chem. 133 (2008) 135–143. doi:10.1016/j.snb.2008.02.015.
  • [17] N. Sreelekha, K. Subramanyam, D. Amaranatha Reddy, G. Murali, S. Ramu, K. Rahul Varma, R.P. Vijayalakshmi, Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles, Appl. Surf. Sci. 378 (2016) 330–340. doi:10.1016/j.apsusc.2016.04.003.
  • [18] M. Saranya, C. Santhosh, R. Ramachandran, P. Kollu, P. Saravanan, M. Vinoba, S.K. Jeong, A.N. Grace, Hydrothermal growth of CuS nanostructures and its photocatalytic properties, Powder Technol. 252 (2014) 25–32. doi:10.1016/j.powtec.2013.10.031.
  • [19] X.S. Hu, Y. Shen, L.H. Xu, L.M. Wang, Y.J. Xing, Preparation of flower-like CuS by solvothermal method and its photodegradation and UV protection, J. Alloys Compd. 674 (2016) 289–294. doi:10.1016/j.jallcom.2016.03.047.
  • [20] W. Wang, L. Ao, Synthesis and characterization of crystalline CuS nanorods prepared via a room temperature one-step, solid-state route, Mater. Chem. Phys. 109 (2008) 77–81. doi:10.1016/j.matchemphys.2007.10.035.
  • [21] Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, C. Burda, Plasmonic Cu 2-xS nanocrystals: Optical and structural properties of copper-deficient copper(I) sulfides, J. Am. Chem. Soc. 131 (2009) 4253–4261. doi:10.1021/ja805655b.
  • [22] N.I. Kovtyukhova, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chem. Mater. 11 (1999) 771–778. doi:10.1021/cm981085u.
  • [23] N. Loudhaief, M. Ben Salem, H. Labiadh, M. Zouaoui, Electrical properties and fluctuation induced conductivity studies of Bi-based superconductors added by CuS nanoparticles synthesized through the aqueous route, Mater. Chem. Phys. 242 (2020) 122464. doi:10.1016/j.matchemphys.2019.122464.
  • [24] S. Iqbal, A. Bahadur, A. Saeed, K. Zhou, M. Shoaib, M. Waqas, Electrochemical performance of 2D polyaniline anchored CuS/Graphene nano-active composite as anode material for lithium-ion battery, J. Colloid Interface Sci. 502 (2017) 16–23. doi:10.1016/j.jcis.2017.04.082.
  • [25] T. Hurma, S. Kose, XRD Raman analysis and optical properties of CuS nanostructured film, Optik (Stuttg). 127 (2016) 6000–6006. doi:10.1016/j.ijleo.2016.04.019.
  • [26] D. Song, J. Xia, F. Zhang, S. Bi, W. Xiang, Z. Wang, L. Xia, Y. Xia, Y. Li, L. Xia, Multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-graphene hybrid composite film for simultaneous determination of catechol and hydroquinone, Sensors Actuators, B Chem. 206 (2015) 111–118. doi:10.1016/j.snb.2014.08.084.
  • [27] D. Jiang, Q. Xu, S. Meng, C. Xia, M. Chen, Construction of cobalt sulfide/graphitic carbon nitride hybrid nanosheet composites for high performance supercapacitor electrodes, J. Alloys Compd. 706 (2017) 41–47. doi:10.1016/j.jallcom.2017.02.204.
  • [28] J. Luo, J. Lai, N. Zhang, Y. Liu, R. Liu, X. Liu, Tannic Acid Induced Self-Assembly of Three-Dimensional Graphene with Good Adsorption and Antibacterial Properties, ACS Sustain. Chem. Eng. (2016). doi:10.1021/acssuschemeng.5b01407.
  • [29] Y. Li, H. Bin Zhang, L. Zhang, B. Shen, W. Zhai, Z.Z. Yu, W. Zheng, One-Pot Sintering Strategy for Efficient Fabrication of High-Performance and Multifunctional Graphene Foams, ACS Appl. Mater. Interfaces. 9 (2017) 13323–13330. doi:10.1021/acsami.7b02408.
  • [30] J. Sha, C. Gao, S.K. Lee, Y. Li, N. Zhao, J.M. Tour, Preparation of three-dimensional graphene foams using powder metallurgy templates, ACS Nano. 10 (2016) 1411–1416. doi:10.1021/acsnano.5b06857.