The effect of putrescine on DNA methylation on cabbage plant under salt stress conditions

Although studies on tolerance to abiotic stress conditions in cabbage species and varieties have been carried out, these studies have generally been conducted in field and greenhouse pot experiments. In such studies, morphological measurements and evaluations have been made. However, there are deficiencies in physiological and molecular detection studies. Therefore, this study focused on detecting any DNA methylation change in the genome of cabbage seedlings when NaCl salt stress in combination with putrescine Put was applied. Different concentrations of NaCl and Put were applied to white head cabbage Brassica oleraceae L. cv Yalova-F1 . Germination rate, root length, shoot length, seedling index and variation coefficient of germination timewere examined. Eight RAPD primers were used in the CRED-RA analysis. Polymorphism ratios were calculated for each concentration and averages were taken. The results showed that MspI enzyme used in the study was cut from the methylation site and the HpaII enzyme was cut when the methylation did not occur. A total seventy-eight methlation sensitive bands were determined based on the treatments. Class IV was the highest methylation type. This was followed by Class I, Class III and Class II, respectively. Total methylation rate % was varied from 59.0% to 71.8%. It was determined that the full methylation rate % was higher than hemi-methylation rate in all treatments. As a result of this study, it was determined that Put applied in both NaCl stress and stress-free conditions caused demethylation.

___

  • AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H et al. (2016). High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in Plant Science 7: 276. doi:10.3389/fpls.2016.00276
  • Alcazar R, Altabella T, Marco F, Bortolotti C, Reymond M et al. (2010). Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237-1249. doi: 10.1007/s00425-010-1130-0
  • AliRM (2000). Role of putrescine in salt tolerance of Atropa belladonna plant. Plant Science 152: 173-179. doi: 10.1016/ S0168-9452(99)00227-7
  • Al-Lawati A, Al-Bahry S, Victor R, Al-Lawati AH, Yaish MW (2016). Salt stress alters DNA methylation levels in alfalfa (Medicago spp). Genetics and Molecular Reseach 15 (1):15018299. doi: 10.4238/gmr.15018299
  • Arin L, Arabaci C (2019). The influence of exogenous capsaicin application on the germination, seedling growth and yield of pepper. Turkish Journal of Agriculture and Forestry 43: 500- 507. doi: 10.3906/tar-1903-86
  • Arslan E (2012). Kuraklık stresine maruz kalan buğdayda (Triticum aestivum) genetik ve epigenetik değişiklikler üzerine putresinin etkisinin moleküler yöntemler ile belirlenmesi. Master Thesis, Atatürk Üniversitesi , Erzurum, Turkey (in Turkish).
  • Aydın M, PourAH, Haliloglu K, Tosun M (2015). Effect of putrescine application and drought stress on germination of wheat (Triticum aestivum L.). Atatürk University Journal of the Agricultural Faculty 46 (1): 43-55.
  • Aydın M, Pour AH, Tosun M, Haliloğlu K (2016). Effect of application of putrescine on seedling growth and cell division of wheat (Triticum aestivum L.) under drought stress. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 26 (3): 319-332.
  • Deveci M, Tugcu D (2017). Değişik vejetasyon dönemlerine kadar uygulanan farklı tuz konsantrasyonlarının yaprak lahana (Brassica oleraceae var. acephala)’da meydana getirdiği bazı fizyolojik ve morfolojik değişikliklerin belirlenmesi. Akademik Ziraat Dergisi 6: 81-88 (In Turkish).
  • Erdal İ, Türkmen Ö, Yıldız M(2000). Tuz stresi altında yetiştirilen hıyar (Cucumis sativus L.) fidelerinin gelişimi ve kimi besin maddeleri içeriğindeki değişimler üzerine potasyumlu gübrelemenin etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 10 (1): 25-29 (In Turkish).
  • Erturk FA, AgarG, Arslan E, Nardemir G (2015). Analysis of genetic and epigenetic effects of maize seeds in response to heavy metal (Zn) stress. Environmental Science and Pollution Research 22 (13): 10291-10297. doi: 10.1007/s11356-014-3886-4
  • Galiana-Belaguer L, Ibanez G, Cebolla-Cornejo J, Rosello S (2018). Evaluation of germplasm in Solanum section Lycopersicon for tomato taste improvement. Turkish Journal of Agriculture and Forestry 42: 309-321. doi: 10.3906/tar-1712-61
  • Gill SS,Tuteja N (2010). Polyamines and abiotic stress tolerance in plants. Plant Signaling and Behavior 51: 26-33. doi: 10.4161/ psb.5.1.10291
  • Guangyuan L, Kun X (2007). DNA damage and hypermethylation of rapeseed plants in response to salt stress. In: The 12th International Rapeseed Congress; Wuhan, China. pp. 657-659.
  • Guangyuan L, Xiaoming W, Biyun C, Gao G, Kun X (2007).
  • Evaluation of genetic and epigenetic modification in rapeseed (Brassica napus) induced by salt stress. Journal of Integrative Plant Biology 49 (11):1599-1607. doi: 10.1111/j.1774- 7909.2007.00566.x
  • Günay A (2005). SebzeYetiştiriciliği (Cilt I). İzmir, Turkey: Meta Yayınevi, p. 531 (In Turkish).
  • Huimei C(2006). Effect of salt stresses on different chinese cabbage seed germination. Journal of Anhui Agricultural Sciences 34 (18): 4680.
  • Islam MA, Pang JH, Meng FW, Li YW, Xu N et al. 2020. Putrescine, spermidine, and spermine play distinct roles in rice salt tolerance. Journal of Integrative Agriculture 19 (3): 643-655. doi: 10.1016/S2095-3119(19)62705-X
  • İzmirli M (2013). Epigenetik mekanizmalar ve kanser tedavisinde epigenetic yaklaşımlar. Van Tıp Dergisi 20 (1): 48-51 (In Turkish).
  • amil M, Rehman S, Rha ES (2007a). Salinity effect on plant growth, PSII photochemistry and chlorophyll content in sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.). Pakistan Journal of Botany 39 (3):753-760.
  • Jamil M, Lee KB, Jung KY, Lee DB, Han MS et al. (2007b). Salt stress inhibits germination and early seedling growth in cabbage (Brassica oleraceae capitata L.). Pakistan Journal of Biological Sciences 10 (6): 910-914. doi: 10.3923/pjbs.2007.910.914
  • Jan SA, Shinwari ZK, Rabbani MA (2016). Agro-morphological and physiological responses of Brassica rapa ecotypes to salt stress. Pakistan Journal of Botany 48 (4): 1379-1384.
  • Kacar B, Katkat V, Öztürk Ş (2006). Bitki Fizyolojisi (2.Baskı). Ankara, Turkey: Nobel Akademik Yayıncılık (In Turkish). Kalaji MH, Pietkiewicz S (1993). Salinity effects on plant growth and other physiological processes. Acta Physiologiae Plantarum 15 (2).
  • Kashem MA (2014). Garments and Technology. Bangladesh: Granthanir Prokashoni, pp. 344-351.
  • Kaya MD, Kaya G, Kolsarıcı Ö (2005). Bazı Brassica türlerinin çimlenme ve çıkışı üzerine NaCl konsantrasyonlarının etkileri. Tarım Bilimleri Dergisi, 11 (4) (In Turkish).
  • Korkmaz Y, Çölgeçen H (2013). Bitki doku kültürü çalışmalarında somaklonal varyasyon. Türk Bilimsel Derlemeler Dergisi 6 (2): 74-78 (In Turkish).
  • Labra M, Miele M, Ledda B, Grassi F, Mazzei M et al. (2004). Morphological characterization, essential oil composition and DNA genotyping of Ocimum basilicum L. cultivars. Plant Science 167 (4): 725-731. doi: 10.1016/j.plantsci.2004.04.026
  • Larcher W (1995). Physiology and stress physiology of functional groups. Physiology Plant Ecology. New York, NY, USA: Springer-Verlag Berlin Heidelberg, pp. 1-506.
  • Lu Y, Rong T, Cao M (2008). Analysis of DNA methylation in different maize tissues. Journal of Genetics and Genomics 35 (1): 41-48. doi: 10.1016/S1673-8527(08)60006-5
  • Lutts S, Kinet JM, Bouharmont J (1996). Ethylene production in relation to salinity by leaves of rice (Oryza sativa L.) tolerance and exogenous putrescine application. Plant Science 116: 15- 25. doi: 10.1016/0168-9452(96)04379-8
  • Marsic NK, Necemer M, Veberic R, Ulrih NP, Skrt M (2019). Effect of cultivar and fertilization on garlic yield and allicin content in bulbs at harvest and during storage. Turkish Journal of Agriculure and Forestry 43: 414-429. doi: 10.3906/tar-1807- 134
  • Paszkowski J, Whitham SA (2001). Gene silencing and DNA methylation processes. Current Opinion in Plant Biology 4 (2): 123-129. doi: 10.1016/S1369-5266(00)00147-3
  • Roychoudhury A, Basu S, Sengupta DN (2011). Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of Indica rice differing in their level of salt tolerance. Journal of Plant Physiology 168: 317-328. doi: 10.1016/j.jplph.2010.07.009
  • Ruiz-Herrera J, Ruiz-Medrano R, Domínguez A (1995). Selective inhibition of cytosine‐DNA methylases by polyamines. FEBS Letters 357 (2): 192-196. doi: 0014-5793(94)01360-8
  • Salmon A, Clotault J, Jenczewski E, Chable V, Manzanares-Dauleux MJ (2008). Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Science 174 (1): 61-70. doi: 10.1016/j.plantsci.2007.09.012
  • Sharma G, Mirza S, Yang YH, Parshad R, Hazrah P et al. (2009a). Prognostic relevance of promoter hypermethylation of multiple genes in breast cancer patients. Cellular Pathology 31 (6): 487-500. doi: 10.3233/CLO-2009-0507
  • Sharma R, Mohan Singh RK, Malik G, Deveshwar P, Tyagi AK et al. (2009b). Rice cytosine DNA methyltransferases-gene expression profiling during reproductive development and abiotic stress. The FEBS Journal 276 (21): 6301-6311. doi: 10.1111/j.1742-4658.2009.07338.x
  • Sharma DK, Dubey AK, Srivastav M, Singh AK, Sairam RK et al.(2011). Effect of putrescine and paclobutrazol on growth, physiochemical parameters, and nutrient acquisition of saltsensitive citrus rootstock Karna khatta (Citrus karna Raf.) under NaCl stress. Journal of Plant Growth Regulation 30: 301- 311. doi: 10.1007/s00344-011-9192-1
  • Shi H, Ye T, Chan Z (2013). Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermuda grass (Cyno dondactylon) response to salt and drought stresses. Journal of Proteome Research 12: 4807-4829. doi: 10.1021/pr400479k
  • Shu S, Guo SR, Sun J, Yuan LY (2012). Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiologia Plantarum 146 (3): 285-96. doi: 10.1111/j.1399- 3054.2012.01623.x
  • Sığmaz B, Agar G, Arslan E, Aydin M, Taspinar MS (2015). The role of putrescine against the long terminal repeat (LTR) retrotransposon polymorphisms induced by salinity stress in Triticum aestivum. Acta Physiologiae Plantarum 37 (11): 251. doi: 10.1007/s11738-015-2002-9
  • Singh J, Upadhyay AK, Bahadur A, Singh B, Singh KP et al. (2006). Antioxidant phytochemicals in cabbage (Brassica oleracea L. var. capitata). Scientia Horticulturae 108 (3): 233-237. doi: 10.1016/j.scienta.2006.01.017
  • Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A(2012). Contrapuntal role of ABA: Does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506 (2): 265-273. doi: 10.1016/j.gene.2012.06.076
  • Stewart DJ, Donehower RC, Eisenhauer EA, Wainman N, Shah AK et al. (2003). A phase I pharmacokinetic and pharmacodynamic study of the DNA methyltransferase 1 inhibitor MG98 administered twice weekly. Annals of Oncology 14 (5): 766- 774. doi: 10.1093/annonc/mdg216
  • Verma S, Mishra SN (2005). Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. Journal of Plant Physiology 162 (6): 669-677. doi: 10.1016/j.jplph.2004.08.008
  • Wang B, Zhang M, Fu R, Qian X, Rong P et al. (2013). DNA methylation-associated epigenetic changes in stress tolerance of plants. In: Molecular stress physiology of plants. Molecular Stress Physiology of Plants: 427-440. doi: 10.1007/978-81-322- 0807-5_17
  • Xu X, Shi G, Ding C, Xu Y (2011). Regulation of exogenous spermidine on the reactive oxygen species level and polyamine metabolism in Alternanthera philoxeroides (Mart.) Griseb under copper stress. Plant Growth Regulation 63: 251-258. doi: 10.1007/s10725-010-9522-5
  • Yang C, Zhang M, Niu W, Yang R, Zhang Y et al. (2011). Analysis of DNA methylation in various swine tissues. PLoS One 6 (1): e16229. doi: 10.1371/journal.pone.0016229
  • Ye W, Zhu X (2016). Epigenetic mechanisms of salt tolerance and heterosisin Upland cotton (Gossypium hirsutum L.) revealed by methylation-sensitive amplified polymorphism analysis. Euphytica 208: 477-491. doi: 10.1007/s10681-015-1586-x
  • Yıldız M, Terzi H, Akçalı N (2014). Bitki tuz stresi toleransında salisilikasit ve poliaminler. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 14: 021002 (7-22) (In Turkish). doi: 10.5578/fmbd.7763
  • Yılmaz E, Tuna AL, Bürün B (2011). Bitkilerin tuz stresi etkilerine karşı geliştirdikleri tolerans stratejileri. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 7 (1): 47-66 (in Turkish with an abstract in English).
  • Yokoi S, Bressan RA, Hasegawa PM (2002). Salt stress tolerance of plants. JIRCAS Working Report 23 (1): 25-33.
  • Zhang C, Shi W, Ma K, Li H, Zhang F (2016). EGTA, a calcium chelator, affects cell cycle and increases DNA methylation in root tips of Triticum aestivum L. Acta Societatis Botanicorum Poloniae 85 (3). doi: 10.5586/asbp.3502
  • Zia-Ul-Haq M,Ahmad S, Bukhari SA, Amarowicz R, Ercisli S et al. 2014. Compositional studies and biological activities of some mash bean (Vigna mungo (L.) Hepper) cultivars commonly consumed in Pakistan. Biological Research 47: 23. doi:10.1186/0717-6287-47-23