Reforming cotton genes: from elucidation of DNA structure to genome editing

Reforming cotton genes: from elucidation of DNA structure to genome editing

Cotton is an essential fiber producing crop in the world. It also supports additional industries by providing high quality oil and protein in the form of cottonseed cake. Currently, there is an urgent need to increase lint yield, fiber quality, and resistance to biotic and abiotic stresses due to rising pressure from a global population and possible supply shortages from the effects of erratic climate changes. Classic plant breeding and transgenic strategies need more genetic breakthroughs to support the increasing pressure for fiber quantity and quality. A potential for rapid increases in crop improvement is in various state-of-the-art gene editing technologies. Genetic research in simple micro-organisms revealed novel enzymes involved in natural sequence editing in cells, and they were successfully applied to gene editing in model plants through a system called clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-Cas9). This and other enzymatic systems are heralded as providing numerous possibilities for creating genetic variation for crop breeders. However, gene editing in agriculture is most effective when focused on achieving transmissible changes by inducing targeted mutations in genes involved in yield or quality attributes. The newly emerged CRISPR-Cas tools should accelerate future research in cotton breeding because they can be utilized efficiently for gene editing without the need for foreign gene insertion. Gene editing with CRISPR-Cas is achieved through the modification of gene regulatory mechanisms, enzymatic activities, and epigenetic factors as well as insect/pest gene drive technology, RNA targeting, and, more recently, single base and prime editing.

___

  • Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM et al. (2016). C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353 (6299): aaf5573. doi:10.1126/science.aaf5573
  • Abudayyeh, OO, Gootenberg JS, Essletzbichler P, Han S, Joung J et al. (2017). RNA targeting with CRISPR–Cas13. Nature 550 (7675): 280-284. doi:10.1038/nature24049
  • Ainley WM, Sastry-Dent L, Welter ME, Murray MG, Zeitler B et al. (2013). Trait stacking via targeted genome editing. Plant Biotechnology Journal 11: 1126-1134. doi.org/10.1111/ pbi.12107
  • Alphey L (2013). Genetic control of mosquitoes. Annual Review of Entomology 59: 205-224. doi:10.1146/annurevento-011613-162002
  • Aslam S, Khan SH, Ahmed A, Dandekar AM (2020). The tale of cotton plant: from wild type to domestication, leading to ıts ımprovement by genetic transformation. American Journal of Molecular Biology 10 (2) 91. doi:10.4236/ajmb.2020.102008
  • Asplen MK, Anfora G, Biondi A, Choi DS, Chu D et al. (2015). Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. Journal of Pest Science 88 (3): 469-494. doi:10.1007/s10340-015-0681-z
  • Bevan MW, Flavell RB, Chilton MD (1983). A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304: 184-187.
  • Bibikova M, Beumer K, Trautman JK, Carroll D (2003). Enhancing gene targeting with designed zinc finger nucleases. Science 300 (5620): 764.
  • Boch J, Bonas U (2010). Xanthomonas AvrBs3 Family-Type III effectors: discovery and function. Annual Review of Phytopathology 48: 419-436. doi:10.1146/annurevphyto-080508-081936
  • Bogdanove AJ, Schornack S, Lahaye T (2010). TAL effectors: finding plant genes for disease and defense. Current Opinion in Plant Biology 13 (4): 394-40. doi:10.1016/j.pbi.2010.04.010
  • Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151: 2551- 2561. doi:10.1099/mic.0.28048-0
  • Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K et al. (2017). New CRISPR–Cas systems from uncultivated microbes. Nature 542 (7640): 237-241. doi:10.1038/nature21059
  • Burt A (2003). Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proceedings of the Royal Society B: Biological Sciences 270 (1518). doi:10.1098/ rspb.2002.2319
  • Campbell BT, Dever JK, Hugie KL, Kelly CM (2018). Cotton fiber improvement through breeding and biotechnology. In: Fang DD (editor). Cotton Fiber: Physics, Chemistry and Biology. Berlin/Heidelberg, Germany: Springer, Cham, pp. 193-215.
  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y et al. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research 39 (12): 82. doi:10.1093/nar/gkr218
  • Chaudhary K (2018). CRISPR/Cas13a targeting of RNA virus in plants. Plant Cell Reports 37 (12): 1707-1712. doi:10.1007/ s00299-018-2297-2
  • Chen X, Lu X, Shu N, Wang S, Wang J et al. (2017). Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Scientific Reports 7: 44304. doi:10.1038/srep44304
  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F et al. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186 (2): 757-761. doi:10.1534/genetics.110.120717
  • Courtier‐Orgogozo V, Morizot B, Boëte C (2017). Agricultural pest control with CRISPR‐based gene drive: time for public debate: Should we use gene drive for pest control? EMBO Reports 18 (6): 878-880. doi:10.15252/embr.201744205
  • Curtin SJ, Voytas DF, Stupara RM (2012). Genome engineering of crops with designer nucleases. Plant Genome-US 5 (2): 42-50. doi:10.3835/plantgenome2012.06.0008
  • Da-Graça JV, Douhan, GW, Halbert SE, Keremane ML, Lee RF et al. (2016). Huanglongbing: an overview of a complex pathosystem ravaging the world’s citrus. Journal of Integrative Plant Biology 58 (4): 373-387. doi:10.1111/jipb.12437
  • Deredec A, Burt A, Godfray HCJ (2008). The population genetics of using homing endonuclease genes in vector and pest management. Genetics 179 (4): 2013-2026. doi:10.1534/ genetics.108.089037
  • Doudna J (2015). Genome-editing revolution: my whirlwind year with CRISPR. Nature News 528 (7583): 469. doi:10.1038/528469a
  • Doudna JA, Charpentier E (2014). The new frontier of genome engineering with CRISPR-Cas9. Science 346 (6213). doi:10.1126/ science.1258096
  • Eckhoff PA, Wenger EA, Charles JH, Godfray, Burt A (2017). Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics. Proceedings in Natural Academy of Sciences 114 (2): E255-E264. doi:10.1073/ pnas.1611064114
  • Endo, A, Masafumi, M, Kaya, H, Toki, S (2016). Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Scientific Reports 6 (1): 1-9. doi:10.1038/ srep38169
  • Esvelt KM, Smidler AL, Catteruccia F, Church GM (2014). Emerging technology: concerning RNA-guided gene drives for the alteration of wild populations. eLife 3: e03401. doi:10.7554/ eLife.03401.001
  • Gao W, Long L, Tian X, Xu F, Liu J et al. (2017). Genome editing in cotton with the CRISPR/Cas9 system. Frontiers in Plant Science 8: 1364. doi:10.3389/fpls.2017.01364
  • Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH et al. (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551: 464-471. doi:10.1038/ nature24644
  • Gowda A, Rydel TJ, Wollacott AM, Brown RS, Akbar W et al. (2016). A transgenic approach for controlling Lygus in cotton. Nature Communications 7 (1): 1-7.
  • Hodgins KA, Rieseberg L, Otto SP (2009). Genetic control of invasive plants species using selfish genetic elements. Evolutionary Applications 2: 555-559. doi:10.1111/j.1752-4571.2009.00102.x
  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 169 (12): 5429-5433. doi:10.1128/jb.169.12.5429-5433.1987
  • Janga MR, Campbell LM, Rathore KS (2017). CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.). Plant Molecular Biology 94 (4-5): 349-360. doi:10.1007/ s11103-017-0599-3
  • Janga MR, Pandeya D, Campbell LM, Konganti K, Villafuerte ST et al. (2019). Genes regulating gland development in the cotton plant. Plant Biotechnology Journal 17 (6): 1142-1153. doi:10.1111/ pbi.13044
  • Jansen R, Van-Embden JDA, Gaastra W, Schouls LM (2000). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Biology 43 (6): 1565–1575. doi:10.1046/ j.1365-2958.2002.02839.x
  • Jiang, W., D. Bikard, D. Cox, F. Zhang and L. A. Marraffini. 2013. RNA-Guided Editing of Bacterial Genomes Using CRISPR-Cas Systems. Nature Biotechnology 31(3): 233. doi:10.1038/nbt.2508
  • Jiang YY, Chai YP, Lu MH, Han XL, Lin Q et al. (2020). Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biology 21 (1): 1-10. doi:10.1186/ s13059-020-02170-5
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA et al. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337 (6096): 816-821. doi:10.1126/science.1225829
  • Jinek M, East A, Cheng A, Lin S, Ma E et al. (2013). RNA-programmed genome editing in human cells. eLife 2: e00471. doi:10.7554/ eLife.00471.001
  • Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E et al. (2014). Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343: (6176). doi:10.1126/ science.1247997
  • Kanchiswamy CN, Malnoy M, Velasco R, Kim J, Viola R (2015). NonGMO genetically edited crop plants. Trends in Biotechnology 33 (9): 489-491. doi:10.1016/j.tibtech.2015.04.002
  • Kang BC, Yun JY, Kim ST, Shin Y, Ryu J et al. (2018). Precision genome engineering through adenine base editing in plants. Nature Plants 4 (7): 427-431. doi:10.1038/s41477-018-0178-x
  • Kay S, Bonas U (2009). How Xanthomonas type III effectors manipulate the host plant. Current Opinion in Microbiology 12 (1): 37-43. doi:10.1016/j.mib.2008.12.006
  • Khan MZ, Amin I, Hameed A, Mansoor S (2018). CRISPR–Cas13a: prospects for plant virus resistance. Trends in Biotechnology 36 (12): 1207-1210. doi:10.1016/j.tibtech.2018.05.005
  • Khan Z, Khan SH, Mubarik MS, Sadia B, Ahmad A (2017). Use of TALEs and TALEN technology for genetic improvement of plants. Plant Molecular Biology Reporter 35: 1. doi:10.1007/ s11105-016-0997-8
  • Khare E, Chauhan P.S (2020). Transformation of agricultural breeding techniques using biotechnology as a tool. In: Guleria P, Kumar V, Lichtfouse E (editors). Sustainable Agriculture Reviews. Berlin/Heidelberg, Germany: Springer, Cham. pp. 179-191.
  • Kirik A, Salomon S, Puchta H (2000). Species-specific double-strand break repair and genome evolution in plants. EMBO Journal 19: 5562-5566. doi:10.1093/emboj/19.20.5562
  • Klug A, Rhodes D (1987). Zinc fingers: a novel protein fold for nucleic acid recognition. Trends in Biochemical Sciences 12: 464-469. doi:10.1101/SQB.1987.052.01.054
  • Laio F, Ridolfi L, D’Odorico P (2016). The past and future of food stocks. Environmental Research Letters 11: 1-9. doi:10.1088/1748-9326/11/3/035010
  • Ledford H (2017). Takeaways from the CRISPR patent decision. Nature doi:10.1038/nature.2017.21502.
  • Lee CM, Cradick TJ, Fine EJ, Bao G (2016). Nuclease target site selection for maximizing on-target activity and minimizing off-target effects in genome editing. Molecular Therapy 24 (3): 475-487. doi:10.1038/mt.2016.1
  • Li B, Liang S, Alariqi M, Wang F, Wang G et al. (2020). The application of temperature sensitivity CRISPR/LbCpf1 (LbCas12a) mediated genome editing in allotetraploid cotton (G. hirsutum) and creation of nontransgenic, gossypol‐free cotton. Plant Biotechnology Journal 1-3. doi:10.1111/pbi.13470
  • Li C, Unver T, Zhang B (2017). A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.). Scientific Reports-UK 7: 43902. doi:10.1038/ srep43902
  • Li J, Manghwar H, Sun L, Wang P, Wang G et al. (2019). Whole genome sequencing reveals rare off‐target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9‐edited cotton plants. Plant Biotechnology Journal 17 (5): 858-868. doi:10.1111/pbi.13020
  • Li J, Manghwar H, Sun L, Wang P, Wang G et al. (2019). Whole genome sequencing reveals rare off‐target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9‐edited cotton plants. Plant Biotechnology Journal 17 (5): 858-868. doi:10.1111/pbi.13020
  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology 30 (5): 390.
  • Lin Q, Zong Y, Xue C, Wang S, Jin S et al. (2020). Prime genome editing in rice and wheat. Nature Biotechnology 38 (5) 582- 585. doi:10.1038/s41587-020-0455-x
  • Lloyd A, Plaisier CL, Carroll D, Drews GN (2005). Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proceedings of the National Academy of Sciences 102 (6): 2232-2237. doi:10.1073/pnas.0409339102
  • Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG, Murray NE (2013). Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Research 42 (1): 3-19. doi:10.1093/nar/gkt990
  • Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X et al. (2011). De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proceedings of the National Academy of Sciences 108: 2623-2628. doi:10.1073/pnas.1019533108
  • Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E et al. (2011). Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology 9: 467-477. doi:10.1038/ nrmicro2577
  • Mandal A, Sarkar B, Owens G, Thakur JK, Manna MC et al. (2020). Impact of genetically modified crops on rhizosphere microorganisms and processes: a review focusing on Bt cotton. Applied Soil Ecology 148: 103492. doi:10.1016/j.apsoil.2019.103492
  • Mansoor S, Briddon RW, Zafar Y, Stanley J (2003). Geminivirus disease complexes: an emerging threat. Trends in Plant Science 8 (3): 128- 134. doi:10.1016/S1360-1385(03)00007-4
  • Mao Y, Botella JR, Liu Y, Zhu JK (2019). Gene editing in plants: progress and challenges. National Science Review 6 (3): 421-437. doi:10.1093/nsr/nwz005
  • Marraffini LA, Sontheimer EJ (2008). CRISPR ınterference limits horizontal gene transfer in Staphylococci by targeting DNA. Science 322 (5909): 1843-1845. doi: 10.1126/science.1165771
  • McLaughlin GM, Dearden PK (2019). Invasive insects: management methods explored. Journal of Insect Science 19 (5): 17. doi:10.1093/jisesa/iez085
  • Men X, Ge F, Edwards CA, Yardim EN (2005). The influence of pesticide applications on Helicoverpa armigera Hübner and sucking pests in transgenic Bt cotton and non-transgenic cotton in China. Crop Protection 24 (4): 319-324. doi:10.1016/j.cropro.2004.08.006
  • Meng Z, Meng Z, Zhang R, Liang C, Wan J et al. (2015). Expression of the rice arginase gene OsARG in cotton influences the morphology and nitrogen transition of seedlings. PloS One 10 (11): e0141530. doi:10.1371/journal.pone.0141530
  • Miller J, McLachlan AD, Klug A (1985). Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. The EMBO Journal 4 (6): 1609-1614. doi:10.1002/j.1460-2075.1985. tb03825.x
  • Mishra R, Joshi RK, Zhao K (2020). Base editing in crops: current advances, limitations and future implications. Plant Biotechnology Journal 18 (1): 20-31. doi:10.1111/pbi.13225
  • Mojica FJ, Garcia-Martínez J, Soria E (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution 60 (2): 174-182. doi:10.1007/s00239-004-0046-3
  • Mojica FJM, Diez-Villasenor C, Soria E, Juez G (2000). Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular Biology 36 (1): 244–246.
  • Mojica FJM, Ferrer C, Juez G, Rodriguez-Vale F (1995). Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Molecular
  • Microbiol 17 (1): 85-93. doi:10.1111/j.1365-2958.1995. mmi17010085.x
  • Mojica FJM, Garrett RA (2012). Discovery and seminal developments in the CRISPR Field. In: Barrangou R, van der Oost J (Editors). CRISPR-Cas Systems. Berlin/Heidelberg, Germany: Springer, pp. 1-31.
  • Mojica FJM, Juez G, Rodriguez-Valera F (1993). Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Molecular Microbiol 9 (3): 613-621. doi:10.1111/j.1365-2958.1993.tb01721.x
  • Mubarik MS, Khan SH, Ahmad A, Khan Z, Sajjad M et al. (2016). Disruption of phytoene desaturase gene using transient expression of cas9: gRNA complex. International Journal of Agriculture and Biology 18: 990-996. doi: 10.17957/ IJAB/15.0199
  • Mubarik MS, Khan SH, Ahmad A, Raza A, Khan Z et al. (2020). Controlling Geminiviruses before Transmission: Prospects. Plants 9 (11): 1556. doi:10.3390/plants9111556
  • Mubarik MS, Khan SH, Sadia B, Ahmad A (2019). CRISPR-Cas9 based Suppression of Cotton Leaf Curl Virus in Nicotiana benthamina. International Journal of Agriculture and Biology 22 (3) 517-522. doi:10.17957/IJAB/15.1094
  • Nekrasov, V., B. Staskawicz, D. Weigel, J. D. G. Jones and S. Kamoun. 2013. Multiplex and Homologous RecombinationMediated Plant Genome Editing via Guide RNA/Cas9. Nature Biotechnology 31(8): 688. doi:10.1038/nbt.2654
  • Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M et al. (2016). Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353: (6305). doi:10.1126/science.aaf8729
  • Orgogozo VC, Morizot B, Boete C (2017). Agricultural pest control with CRISPR‐based gene drive: time for public debate. EMBO Reports e201744205. doi:10.15252/embr.201744205
  • Peng R, Jones DC, Liu F, Zhang B (2020). From Sequencing to Genome Editing for Cotton Improvement. Trends in Biotechnology doi.org/10.1016/j.tibtech.2020.09.001.
  • Petolino JF (2015). Genome editing in plants via designed zinc finger nucleases. In Vitro Cellular and Developmental Biology – Plant 51 (1): 1-8. doi:10.1007/s11627-015-9663-3
  • Pixley KV, Falck-Zepeda JB, Giller KE, Glenna LL, Gould F et al. (2019). Genome editing, gene drives, and synthetic biology: Will they contribute to disease-resistant crops, and who will benefit? Annual Review of Phytopathology 57: 165-188. doi:10.1146/annurev-phyto-080417-045954
  • Puchta H, Dujon B, Hohn B (1996). Two different but related mechanisms are used in plants for the repair of genomic doublestrand breaks by homologous recombination. Proceedings of the National Academy of Sciences 93: 5055-5060. doi:10.1073/ pnas.93.10.5055
  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS et al. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152 (5): 1173-1183. doi:10.1016/j.cell.2013.02.022
  • Qin L, Li J, Wang Q, Xu Z, Sun L et al. (2020). High‐efficient and precise base editing of C• G to T• A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/ Cas9 system. Plant Biotechnology Journal 18 (1): 45-56. doi:10.1111/pbi.13168
  • Rathore KS, Pandeya D, Campbell LM, Wedegaertner TC, Puckhaber L et al. (2020). Ultra-low gossypol cottonseed: selective gene silencing opens up a vast resource of plant-based protein to ımprove human nutrition. Critical Reviews in Plant Sciences 1-29. doi:10.1080/07352689.2020.1724433
  • Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG et al. (2000). Genome-wide location and function of DNA binding proteins. Science 290 (5500): 2306-2309. doi: 10.1126/ science.290.5500.2306
  • Rostami MN (2020). CRISPR/Cas9 gene drive technology to control transmission of vector‐borne parasitic infections. Parasite Immunology 42 (9): e12762. doi:10.1111/pim.12762
  • Ruel MT, Garrett J, Yosef S, Olivier M (2017). Urbanization, food security and nutrition. In: de Pee S, Taren D, Bloem M (editors). Nutrition and Health in a Developing World. Nutrition and Health. Humana Press, Cham. Pp. 705-735.
  • Sandhya, D, Jogam P, Allini VR, Abbagani, S, Alok A (2020). The present and potential future methods for delivering CRISPR/ Cas9 components in plants. Journal of Genetic Engineering and Biotechnology 18 (1): 1-11. doi.org/10.1186/s43141-020- 00036-8
  • Sattar MN, Kvarnheden A, Saeed M, Briddon RW (2013). Cotton leaf curl disease–an emerging threat to cotton production worldwide. Journal of General Virology 94 (4): 695-710. doi:10.1099/vir.0.049627-0
  • Seletsky AE, O’Connell MR, Knight SC, Burstein D, Cate JHD et al. (2016). Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538: 270- 273. doi:10.1038/nature19802
  • Sharma A, Shukla A, Attri K, Kumar M, Kumar P et al. (2020). Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicology and Environmental Safety 201: 110812. doi:10.1016/j.ecoenv.2020.110812
  • Shen JP, Zhao D, Sasik R, Luebeck J, Birmingham A et al. (2017). Combinatorial CRISPR–Cas9 screens for de novo mapping of genetic interactions. Nature Methods 14: 573-576. doi:10.1038/ nmeth.4225
  • Shimatani, Z, Kashojiya S, Takayama M, Terada R, Arazoe T et al. (2017). Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology 35:5 441-443. doi:10.1038/nbt.3833
  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA et al. (2009). Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459: 437-441. doi:10.1038/nature07992
  • Siebert R, Puchta H (2002). Efficient Repair of genomic doublestrand breaks via homologous recombination between directly repeated sequences in the plant genome. Plant Cell 14: 1121- 1131. doi:10.1105/tpc.001727
  • Smith HO, Welcox KW (1970). A Restriction enzyme from Hemophilus influenzae: I. Purification and general properties. Journal of Molecular Biology 51(2): 379-391.
  • Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S et al. (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Research 28 (17): 3361-3369. doi:10.1093/nar/28.17.3361
  • Stern A, Keren L, Wurtzel O, Amitai G, Sorek R (2010) Self-targeting by CRISPR: gene regulation or autoimmunity. Trends in Genetics 26 (8): 335-340. doi:10.1016/j.tig.2010.05.008
  • Tak YE, Kleinstiver BP, Nunez JK, Hsu JY, Horng JE et al. (2017). Inducible and multiplex gene regulation using CRISPR–Cpf1- based transcription factors. Nature Methods 14: 1163-1166. doi:10.1038/nmeth.4483
  • Takeuchi R, Lambert AR, Mak ANS, Jacoby K, Dickson RJ et al. (2011). Tapping natural reservoirs of homing endonucleases for targeted gene modification. Proceedings of the National Academy of Sciences 108 (32): 13077-13082. doi:10.1073/ pnas.1107719108
  • Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X et al. (2017). A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants 3: 17018. doi:10.1038/nplants.2017.18
  • Tarazi R, Jimenez JLS, Vaslin MF (2020). Biotechnological solutions for major cotton (Gossypium hirsutum) pathogens and pests. Biotechnology Research and Innovation 3 19-26. doi:10.1016/j. biori.2020.01.001
  • Van Eck J. (2020). Applying gene editing to tailor precise genetic modifications in plants. Journal of Biological Chemistry 295 (38): 13267-13276. doi: 10.1074/jbc.REV120.010850
  • Waltz E (2016). Gene-edited CRISPR mushroom escapes US regulation. Nature 532: 293. doi:10.1038/nature.2016.19754
  • Wang P, Zhang J, Sun L, Ma Y, Xu J et al. (2018b). High efficient multi-sites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnology Journal 16 (1): 137-150. doi:10.1111/pbi.12755
  • Wang W, Pan Q, He F, Akhunova A, Chao S et al. (2018a). Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. The CRISPR Journal 1 (1): 65-74. doi:10.1089/crispr.2017.0010
  • Wang Y, Liang C, Wu S, Zhang X, Tang J et al. (2016). Significant improvement of cotton Verticillium wilt resistance by manipulating the expression of Gastrodia antifungal proteins. Molecular Plant 9 (10): 1436-1439. doi:10.1016/j. molp.2016.06.013
  • Wang Y, Meng Z, Liang C, Meng Z, Wang Y et al. (2017). Increased lateral root formation by CRISPR/Cas9-mediated editing of arginase genes in cotton. Science China Life Sciences 60 (5): 524. doi:10.1007/s11427-017-9031-y
  • Watson JD, Crick FH (1953). A structure for deoxyribose nucleic acid. Nature 171 (4356): 737-738.
  • Wright DA, Townsend JA, Winfrey Jr RJ, Irwin PA, Rajagopal J et al. (2005). High‐frequency homologous recombination in plants mediated by zinc‐finger nucleases. The Plant Journal 44 (4): 693-705. doi:10.1111/j.1365-313X.2005.02551.x
  • Xu R, Qin R, Li H, Li D, Li L et al. (2017). Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnology Journal 15: 713-717. doi:10.1111/pbi.12669
  • Yin K, Han T, Xie K, Zhao J, Song J et al. (2019). Engineer complete resistance to Cotton Leaf Curl Multan virus by the CRISPR/ Cas9 system in Nicotiana benthamiana. Phytopathology Research 1 (1): 1-9. doi:10.1186/s42483-019-0017-7
  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS et al. (2015) Cpf1 Is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163 (3): 759-771. doi:10.1016/j.cell.2015.09.038
  • Zhang T, Zhao Y, Ye J, Cao X, Xu C et al. (2019). Establishing CRISPR/ Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants. Plant Biotechnology Journal 17 (7): 1185. doi:10.1111/pbi.13095
  • Zhang Z, Ge X, Luo X, Wang P, Fan Q et al. (2018). Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton. Frontiers in Plant Science 9: 842. doi:10.3389/fpls.2018.00842
  • Zhu S, Yu X, Li Y, Sun Y, Zhu Q et al. (2018). Highly efficient targeted gene editing in upland cotton using the CRISPR/Cas9 system. International Journal of Molecular Sciences 19 (10): 3000. doi:10.3390/ijms19103000
  • Zong Y, Wang Y, Li C, Zhang R, Chen K et al. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology 35 (5): 438. doi:10.1038/nbt.3811