Organic Amendment Based on Tobacco Waste Compost and Farmyard Manure: Influence on Soil Biological Properties and Butter-Head Lettuce Yield

Agro-industrial waste presents an alternative to inorganic fertilizer. It is possible to use tobacco waste as a soil amendment due to its high organic matter and low toxic element content. Tobacco waste compost (TWC) and farmyard manure (FYM) were applied to Typic Xerofluvent soil at various ratios, and butter-head lettuce (Lactuca sativa L. var. Capitata L.) was grown. The effects on soil organic C and total N content, soil microbial biomass, soil respiration, activity of 4 enzymes (dehydrogenase, urease, alkaline phosphatase, and b-glucosidase), and lettuce yield were determined. Organic materials were applied at the rate of 50 t ha-1. Significantly (P < 0.05) higher values were observed for Corg, total N, soil respiration, and dehydrogenase, urease, and alkaline phosphatase activity in 25% FYM + 75% TWC and 100% TWC soils than in the control. The microbial biomass C level in the soils increased in response to all compost treatments. b-glucosidase activity values did not show statistical differences between any of the organic amendment treatments. The application of TWC and FYM resulted in a significant increase in lettuce yield when compared to the control. The results suggest that the incorporation of TWC as an alternative organic amendment might improve soil chemical and biological parameters, as well as crop yield in dryland and especially in Mediterranean soil, which are both characterized by low organic matter content.

Organic Amendment Based on Tobacco Waste Compost and Farmyard Manure: Influence on Soil Biological Properties and Butter-Head Lettuce Yield

Agro-industrial waste presents an alternative to inorganic fertilizer. It is possible to use tobacco waste as a soil amendment due to its high organic matter and low toxic element content. Tobacco waste compost (TWC) and farmyard manure (FYM) were applied to Typic Xerofluvent soil at various ratios, and butter-head lettuce (Lactuca sativa L. var. Capitata L.) was grown. The effects on soil organic C and total N content, soil microbial biomass, soil respiration, activity of 4 enzymes (dehydrogenase, urease, alkaline phosphatase, and b-glucosidase), and lettuce yield were determined. Organic materials were applied at the rate of 50 t ha-1. Significantly (P < 0.05) higher values were observed for Corg, total N, soil respiration, and dehydrogenase, urease, and alkaline phosphatase activity in 25% FYM + 75% TWC and 100% TWC soils than in the control. The microbial biomass C level in the soils increased in response to all compost treatments. b-glucosidase activity values did not show statistical differences between any of the organic amendment treatments. The application of TWC and FYM resulted in a significant increase in lettuce yield when compared to the control. The results suggest that the incorporation of TWC as an alternative organic amendment might improve soil chemical and biological parameters, as well as crop yield in dryland and especially in Mediterranean soil, which are both characterized by low organic matter content.

___

  • Adediran, J.A., N. De Baets, P.N.S. Mnkeni, L. Kiekens, N.Y.O. Muyima and A. Thys. 2003. Organic waste materials for soil fertility improvement in the Border region of the Eastern Cape, South Africa. Biological Agriculture and Horticulture. 20: 283-300.
  • Adediran, J.A., P.N.S. Mnkeni, N.C. Mafu, and N.Y.O. Muyima. 2004. Changes in chemical properties and temperature during the composting of tobacco waste with other organic materials, and effects of resulting composts on lettuce (Lactuca sativa L.) and spinach (Spinacea oleracea L.). Biological Agriculture and Horticulture. 22: 101-119.
  • Anderson, J.P.E. and K.H. Domsch. 1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol. Biochem. 21: 471-479.
  • Anderson, T.H. 2003. Microbial eco-physiological indicators to asses soil quality. Agric. Ecosyst. Environ. 98: 285-293.
  • Ayuso, M., J.A. Pascual, C. Garcia and T. Hernandez. 1996. Evaluation of urban wastes for agricultural use. Soil Sci. Plant Nutr. 42: 105- 111.
  • Baldwin, I. T. and P. Callahan. 1993. Autotoxity and chemical defense: Nicotine accumulation and carbon gain in solanaceous plants. Oecologia. 94: 534-541.
  • Bouyoucos, G.J. 1962. A recalibration of the hydrometer method for making mechanical analysis of the soils. Agron. J. 54: 419-434.
  • Bremner, J.M. 1965. Total Nitrogen. In: Methods of Soil Analysis, Part 2. (Ed. Black, C.A), America Society of Agronomy Inc. Publisher, Madison, Wisconsin, USA. pp: 1149-1178.
  • Bremner, J.M. and R.L. Mulvaney, 1978. Urease activity in soils. In: Soil Enzymes (Ed. R.G. Burns), Academic Press, New York, pp.295- 339.
  • Brohi, A.R. and M.R. Karaman. 1996. Bitkilerin gelişimi üzerine tütün tozu ve kompostun etkisi. M.Ü. Müh. Fak. Çevre Müh. Böl., Tarım-Çevre İlişkileri Sempozyumu. Salihli, Manisa.
  • Brookes, P.C. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biol. Fertil. Soils. 19: 269-279.
  • Castellanos, J. and P.F. Pratt, 1981. Mineralization of manure nitrogen- correlation with laboratory indexes. Soil Sci. Soc. Am. J. 45: 354- 357.
  • Chang, E.H., R.S. Chung and Y.H. Tsai. 2007. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci. Plant Nutr. 53: 132-140.
  • Czekala, J., M. Jakubus, A. Mocek and W. Owczarzak, 1998. Humus- forming value and properties of humic compounds formed during incubation of tobacco dust with lime and sewage sludge. In: Conference on Humic Substances in Ecosystems, Rackova Dolina (Slovak Republic), Bratislava, Nitra, pp: 71-75.
  • Durak, A., and A.R. Brohi. 1986. Tütün tozunun organik gübre olarak değerlendirilmesi. Türkiye Tütüncülüğü ve Geleceği Sempozyumu, Tokat, pp: 261-269.
  • Eivazi, F. and M.A. Tabatabai. 1977. Phosphatases in soils. Soil Biol.
  • Forster, J.C., W. Zech and E. Würdiger. 1993. Comparison of chemical and microbiological methods for the characterization of the maturity of composts from contrasting sources. Biol. Fert. Soil. 16: 93-99.
  • Garcia, C., T. Hernandez, F. Costa and B. Ceccanti. 1994. Biochemical parameters in soils regenerated by the addition of organic wastes. Waste Manage. Res. 12: 457-466.
  • Garcia, C., T. Hernandez, J.A. Pascual, J.L. Moreno and M. Ros. 2000. Microbial activity in soils of SE Spain exposed to degradation and desertification processes. Strategies for their rehabilitation. In: Research and perspectives of soil enzymology in Spain. (Eds. C. Garcia and T. Hernandez), CEBAS-CSIC, Murcia, pp. 41-43.
  • Garcia-Gil, J.C., C. Plaza, P. Soler-Rovira and A. Polo. 2000. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem. 32: 1907-1913.
  • Gök, M., I. Onaç, B. Karıp, T. Sağlamtimur, A. Coşkan, V. Tansı and M. Kızılşimşek. 1998. Hasat artıkları, tütün atışı ve hayvan gübresi uygulamalarının toprakta azot mineralizasyonu, immobilizasyonu ve toprağın bazı biyolojik özelliklerine etkisi. In: Proceedings of M. Şefik Yeşilsoy International Symposium on Arid Region Soil. Menemen, pp. 551-557.
  • Gülser, C. and F. Candemir. 2004. Changes in Atterberg limits with different organic waste application. In: Proceedings of International Soil Congress (ISC) on Natural Resource Management for Sustainable Development, Erzurum, pp: (C): 8- 15.
  • Hoffman, G. and M. Dedekan. 1965. Eine Methode zur Kolorimetrischen Bestimmung der β-glucosidase Aktivität in Boden. Z. Pflanzenernaehr. Bodenkd. 108: 195-201.
  • Insam, H., C.C. Mitchell and J.F. Dormaar. 1991. Relationship of soil microbial biomass and activity with fertilisation practice and crop yield of tree ultisols. Soil Biol. Biochem. 32: 1131-1139.
  • Isermeyer, H. 1952. Eine Einfache Methode zur Bestimmung der Karbonate im Boden, Z. Pflanzenern. Düng., Bodenkunde.
  • Jackson, M.L. 1967. Soil Chemical Analysis. Prentice Hall of India Private Limited; New Delhi, India.
  • Kacar, B. 1995. Bitki ve Toprağın Kimyasal Analizleri III. Toprak Analizleri. Ankara Üniversitesi Ziraat Fakültesi Eğitim Araştırma ve Geliştirme Vakfı Yayın No. 3. Ankara, Türkiye.
  • Kandeler, E. and H. Gerber. 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fert. Soil. 6: 68-72.
  • Kara, E. E. and V. Uygur. 2004. The effects organic amendments on soil nitrogen mineralization and soil biological activity under wheat cultivation. In: Proceedings of International Soil Congress (ISC) on Natural Resource Management for Sustainable Development, Erzurum, pp. (I)58-65
  • Kılıç, K., K. Saltalı and A.K. Sürücü. 2002. Tütün tozu uygulamasının alkali toprakların fiziksel ve kimyasal özelliklerine etkileri. Turk J. Agric. For. 26: 87-91.
  • Kramer, S. and D.M. Green. 2000. Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in semi-arid woodland. Soil Biol. Biochem. 32: 179-188.
  • Landgraf, D. and S. Klose. 2002. Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activities in a sandy soil under different management systems. J. Plant Nutr. Soil Sci. 165: 9-16.
  • Landgraf, D., C. Böhm and F. Makeschin. 2003. Dynamic of different C and N fractions in a Cambisol under five year succession fallow in Saxony (Germany). J. Plant Nutr. Soil Sci. 166: 319-325.
  • Manna, M.C., S. Kundu, M. Singh and P.N. Takkar. 1996. Influence farmyard manure on dynamics of microbial biomass and its turnover and activity of enzymes under a soyabean-wheat system on a Typic Haplustert. J. Indian Soc. Soil Sci. 44: 409-412.
  • Martens, R. 1995. Current methods for measuring microbial biomass C in soil: potentials and limitations. Biol. Fertil. Soils. 19: 87-99.
  • Masciandaro, G., B. Ceccanti and C. Garcia. 1997. Change in soil biochemical and cracking properties induced by “living mulch systems”. Can. J. Soil Sci. 77: 579-587.
  • Melero, S., E. Madejon, J.C. Ruiz and J.F. Herencia. 2007. Chemical and biochemical properties of a clay soil under dryland agriculture system as affected by organic fertilization. Europ. J. Argonomy. 26: 327-334.
  • Nannipieri, P., S. Cervelli and A. Perna. 1978. Enzyme activities in some Italian soils. Agric. Ital., Pisa. 73: 367-376.
  • Nannipieri, P., S. Grego and B. Ceccanti. 1990. Ecological significance of the biological activity in soil. Soil Biol. Biochem. 6: 293-355.
  • Okur, B., N. Mordoğan, S. Sekin, S. Erkan. 1999. Ege Bölgesindeki bazı tütün işletmelerinin tütün atık ve tütün tozunun kimyasal içerikleri. E.Ü. Zir. Fak. Derg. 36: 57-73.
  • Özdemir, N., R. Kızılkaya and A. Sürücü. 2000. Farklı organik atıkların toprakların üreaz enzim aktivitesi üzerine etkisi. Ekoloji Çevre Dergisi. 37: 23-26.
  • Özgüven, M., Z. Kaya, M.A. Yılmaz, S. Kırcı and S. Tansı. 1999. Sigara fabrikası tütün atıklarının gübre olarak değerlendirilmesi. Turk J. Agric. For. 1: 43-51.
  • Palm, C. A., N.C. Gachengo, R.J. Delve, G. Cadisch, and K.E. Giller. 2001. Organic inputs for soil fertility management in tropical agro-ecosystems: Application of an organic resource database. Agric. Ecosyst. Environ. 83: 27-42.
  • Pascual, J.A., T. Hernandez, C. Garcia and M. Ayuso. 1998. Enzymatic activities in an arid soil amended with urban organic wastes: laboratory experiment. Bioresour. Technol. 64: 131-138.
  • Powlson, D.S., P.C. Brookes and B.T. Christensen, 1987. Measurement of soil microbial biomass provides an early indication changes in total soil organic matter due to straw incorporation. Soil Biol.
  • Ros, M., M.T. Hernandez and C. Garcia. 2003. Bioremidation of soil degraded by sewage sludge: effects on soil properties and erosion losses. J. Environ. Manage. 31: 741-747.
  • Ros, M., S. Klammer, B. Knapp, K. Aichberger and H. Insam. 2006. Long-term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use. Manage. 22: 209-218.
  • Saltalı, K., A.R. Brohi and A.V. Bilgili. 2000. The effect of tobacco waste on the soil characteristics and plant nutrient contents of alkaline soils. In: Proceedings of International Symposium on Desertification, Konya, pp. 531-534.
  • Tabatabai, M.A. 1994. Enzymes. In Methods of Soil Analysis, Part 2. (eds. R.W. Weaver, S. Augle, P.J. Bottomly, D. Bezdicek, S. Smith, A. Tabatabai and A. Wollum), Soil Science Society of America, Madison, U.S.A. pp. 775-833.
  • Tarakçıoğlu, C. and İ. Erdal. 2000. Değişik organik materyallerin mısır bitkisinin gelişimi ve mineral madde içeriği üzerine etkisi. O.M.Ü. Zir. Fak. Derg. 15: 80-85.
  • Tejade, M. and J.L. Gonzales. 2006. Crushed cotton gin compost on soil biological properties and rice yield. Europ. J. Agronomy. 25: 22- 29.
  • Thalmann, A. 1968. Zur methodik der bestimmung der dehydrogenaseaktivitaet Triphenyltetrazoliumchlorid (TTC). Landwirtschaft Forschung. 21: 249-258. im boden mittels