Moisture content effect on sound wave velocity and acoustic tomograms in agarwood trees (Aquilaria malaccensis Lamk.)

Moisture content effect on sound wave velocity and acoustic tomograms in agarwood trees (Aquilaria malaccensis Lamk.)

Gaharu or agarwood or oudh is a fragrant and highly valuable nontimber forest product obtained from several species of trees that produce it in response to wounding or fungal attack. The aims of the study were to evaluate the sound wave velocity change from green to dry conditions in agarwood and tomographic images associated with changes in the moisture content. A total of 10 trees were selected for this study; five trees were artificially inoculated and the other five were left untreated. After in situ measurement of standing trees stem using nondestructive testing (PiCUS sonic tomography), air-dried disk samples from the trees were assessed. The results showed that sonic velocity values increase from 12% to 22% as moisture content decreases from a green condition (live tree) to an air-dried condition (disk sample). Nevertheless, solid and damage areas revealed only slight differences on the tomograms. This research combines traditional visual assessment with tomography to better detect the presence of agarwood in trees.

___

  • Ahmad NI, Almuin N, Mohammad F (2012). Ultrasonic characterization of standing tree. 18th World Conference on Nondestructive Testing. 16–20 April 2012. Durban, South Africa. http://www.ndt.net/article/wcndt2012/papers/515_ Ahmad.pdf.
  • Azah MAN, Husni SS, Mailina J, Sahrim L, Abdul Majid J, Mohd Faridz Z (2013). Classification of agarwood (gaharu) by resin content. J Trop For Sci 25: 213-219.
  • Barden A, Anak AN, Mulliken T, Song M (2000). Heart of the matter: agarwood use and trade, and CITES implementation for Aquilaria malaccensis. TRAFFIC International Report. https:// portals.iucn.org/library/efiles/documents/Traf-072.pdf.
  • Brazee N, Marra RE, Göcke L, Wassenaer P (2011). Nondestructive assessment of internal decay in three hardwood species of northeastern North America using sonic and electrical impedance tomography. Forestry 84: 33-39.
  • Bucur V (2006). Acoustics of Wood. 2nd ed. Berlin, Germany: Springer-Verlag.
  • Chakrabarty K, Kumar A, Menon V (1994). Trade in agarwood. TRAFFIC India and WWF-India.
  • Chong SP, Osman MF, Bahari N, Nuri EA, Zakaria R, Abdul Rahim K (2015). Agarwood inducement technology: a method for producing oil grade agarwood in cultivated Aquilaria malaccensis Lamk. J Agrobiotechnol 5: 1-16.
  • Compton J, Ishihara A (2004). The Use and Trade of Agarwood in Japan. Cambridge, UK: TRAFFIC International.
  • Deflorio G, Fink S, Schwarze RMWF (2008). Detection of incipient decay in tree stems with sonic tomography after wounding and fungal inoculation. Wood Sci Technol 42: 117-132.
  • Gao S, Wang N, Wang L, Han J (2014). Application of an ultrasonic wave propagation field in the quantitative identification of cavity defect of log disc. Comput Electron Agr 108: 123-129.
  • Gilbert AE, Smiley TE (2004). Picus sonic tomography for the quantification of decay in white oak (Quercus alba) and hickory (Carya spp.). J Arboric 30: 277-280.
  • Göcke L, Gustke B, Rust S (2010). PiCUS sonic tomograph: Manual Program Version Q72. Rostock, Germany: Argus Electronic GmbH.
  • Groenewald S (2005). Biology, pathogenicity and diversity of Fusarium oxyporum f.s.p. cubense. [Thesis]. Pretoria, South Africa: University of Pretoria.
  • Hasegawa M, Taata M, Matsumura J, Oda K (2011). Effect of wood properties on within-tree variation in ultrasonic wave velocity in softwood. Ultrasonics 51: 296-302.
  • Indahsuary N, Nandika D, Karlinasari L, Santoso E (2014). Reliability of sonic tomography to detect agarwood in Aquilaria microcarpa Baill. J Indian Acad Wood Sci 11: 65-71.
  • Ishihara M, Tsuneya T, Uneyama K (1991). Fragrant sesquiterpene from agarwood. Phytochemistry 33: 1147-1155.
  • Iskandar D, Suhendra A (2012). Uji inokulasi Fusarium sp. untuk produksi gaharu pada budidaya A. beccariana. Jurnal Sains dan Teknologi Indonesia. 14: 182-188 (article in Indonesian with an abstract in English).
  • Johnstone D, Moore G, Tausz M, Nicolas M (2010). The measurement of wood decay in landscape trees. Arboric Urban For 36: 121- 127.
  • Karlinasari L, Indahsuary N, Kusumo TH, Santoso E, Turjaman M, Nandika D (2015). Sonic and ultrasonic waves in agarwood trees (Aquilaria microcarpa) inoculated with Fusarium solani. J Trop For Sci 27: 351-356.
  • Karlinasari L, Mulyadi M, Sadiyo S (2005). Kecepatan rambatan gelombang ultrasonik dan keteguhan lentur beberapa jenis kayu pada berbagai kondisi kadar air. Jurnal Teknologi Hasil Hutan. 18: 70-79 (article in Indonesian with an abstract in English).
  • Li G, Wang X, Wiedenback J, Ross RJ (2014). Analysis of wave velocity patterns in Black Cherry trees and its effect on internal decay detection. Comput Electron Agr 104: 32-39.
  • Liang S, Wang X, Wiedenbeck J, Cai Z, Fu F (2007). Evaluation of acoustic tomography for tree decay detection. Proceeding of the 15th international symposium on NDT of wood. Madison, WI, USA: USDA Forest Product Laboratory, pp. 49-54.
  • Lin CJ, Chang TT, Juan MY, Lin TT (2011). Detecting deterioration in royal palm (Roystonea Regia) using ultrasonic tomographic and resistance microdrilling techniques. J Trop For Sci 23: 260- 270.
  • Lin SJ, Kao YC, Lin TT, Tsai MJ, Wang SY, Lin LD, Wang YN, Chan MH (2008). Application of an ultrasonic tomographic technique for detecting defects in standing trees. Int Biodeterior Biodegrad 62: 434-441.
  • Liu Y, Chen H, Yang Y, Zhang Z, Wei J, Meng H, Chen W, Feng J, Gan, B, Chen X et al. (2013). Whole-tree agarwood-inducing technique: an efficient novel technique for producing highquality agarwood in cultivated Aquilaria sinensis trees. Molecules 18: 3086-3106.
  • Nicolotti G, Socco LV, Martinis R, Godio A, Sambuelli L (2003). Application and comparison of three tomographic techniques for detection of decay in trees. J Arboric 29: 66-78.
  • Oliveira FGR, Candian M, Lucchette, Salgon JL, Sales A (2005). Moisture content effect on ultrasonic velocity in Goupia glabra. Mater Res 8: 11-14.
  • Rabe C, Ferner D, Fink S, Schwarze F (2004). Detection of decay in trees with stress waves and interpretation of acoustic tomograms. Arboric J 28: 3-19.
  • Siburian RHS, Siregar UJ, Siregar IZ, Wahyudi I (2013). Identification of anatomical characteristics of Aquilaria microcarpa in its interaction with Fusarium solani. Biotropia 20: 104-111.
  • Siegert B (2013). Comparative analysis of tools and methods for the evaluation of tree stability results of a field test in Germany. Arborist News April: 26-31.
  • Tabata Y, Widjaja E, Mulyaningsih T, Parman, Wiriadinata H, Mandang YI, Itoh T (2003). Structural survey and artificial induction of aloeswood. Wood Res 90: 11-12.
  • Wang X, Allison B (2008). Decay detection in Red oak trees using a combination of visual inspection, acoustic testing, and resistant microdrilling. Arboric Urban For 34: 1-4.
  • Wang X, Wiedenbeck J, Liang S (2008). Acoustic tomography for decay detection in black cherry trees. Wood Fiber Sci 41: 127- 128.
  • Wassenaer P, Richardson M (2009). A review of tree risk assessment using minimally invasive technologies and two case studies. Arboric J 32: 275-292.
  • Wyn LT, Anak NA (2010). Wood for the trees: a review of the agarwood (gaharu) trade in Malaysia. TRAFFIC Southeast Asia.