Kil Mineralleri, Ca/Mg Oranı ve Fe, Al Oksitlerin Strüktür Stabilitesi, Hidrolik ‹letkenlik ve Erozyon İlişkileri

Topraklar›n kil mineralojileri ve kimyasal yap›lar› ile ilgili çal›flmalar, toprak yönetimi çal›flmalar›yla çok seyrek olarak iliflkilendirilmifllerdir. Bu ba¤lamda, çal›fl›lan topraklar›n erozyona duyarl›l›klar›n›n saptanmas› amaçlanarak, topraklar›n kil mineralleri özellikleri ve kalsiyum/magnezyum oranlar› ile serbest alüminyum ve demir içeriklerinin strüktür stabilitesi ve hidrolik iletkenlikleri ile iliflkileri araflt›r›lm›flt›r. Bu amaçla farkl› ana materyaller üzerinde oluflmufl topraklar çal›flmada kullan›lm›fllard›r. Bunlar serpantin, kireçtafl› ve bazalt ana materyalleri üzerinde oluflmufl topraklard›r. ‹ncelenen topraklar strüktür stabilitelerine göre üç grupta yer almaktad›rlar. ‹lk grup topraklar s›¤ olup, en düflük strüktür stabilitesine, en yüksek smektit/kaolinit oran›na ve en düflük Ca+2/Mg+2 oran›na sahiptirler. Buna karfl›n orta derinlikteki ikinci grup topraklar orta düzeyde strüktür stabilitesine ve smektit/kaolinit oran›yla birlikte en yüksek Ca+2/Mg+2 oran›na sahiptirler. Derin profilli üçüncü grup topraklar ise en yüksek strüktür stabilitesine, en düflük smektit /kaolinit oran›na, orta düzeyde Ca+2/Mg+2 oran›na ve en yüksek Al-Fe oksit içeri¤ine sahiptirler. Birinci ve ikinci grup topraklarda bask›n kil minerali smektit olup, üçüncü grup topraklarda bask›n kil minerali kaolinittir. Elde edilen bulgularda, topraklar›n strüktür stabilitesinde; smektit/kaolinit oran›n›n, Ca+2, Mg+2 içeri¤inin, Ca+2/Mg+2 oran›n›n ve Al-Fe oksit içeri¤inin önemli oldu¤u saptanm›flt›r. Bu ölçütler topraklar›n erozyon ile afl›nabilirli¤i üzerine önemli etki etti¤inden, s›¤ profilli birinci grup topraklar›n erozyona daha duyarl› olmalar› nedeniyle, yönetim uygulamalar›n›n dikkatle haz›rlanmalar› gereklili¤ini ortaya koymaktad›r.

Clay Minerals, Ca/Mg Ratio and Fe-Al-Oxides in Relation to Structural Stability, Hydraulic Conductivity and Soil Erosion in Southeastern Turkey

Studies of clay mineralogy and related chemical composition are rarely connected with implications for soil management in the field. However, this study attempts to manifest the practical utilization of analytical data for determining the susceptibility to soil erosion. The data obtained involve the determination of clay mineral properties, calcium/magnesium ratios, and free aluminum (Al) and iron (Fe) oxides on structure stability, and hydraulic conductivity properties. Nine representative soil pedons developed on serpentine, limestone, and basalt parent materials were selected for the study. The soils were initially grouped into 3 according to their structural stability values. Group 1 soils had the lowest structural stability, highest smectite/kaolinite ratios, and shallow profile depths with the lowest Ca2+/Mg2+ ratios. Group 2 soils had moderate structural stability and smectite/kaolinite ratios with moderate profile depths and the highest Ca2+/Mg2+ ratios. Group 3 soils had the highest structural stability values, the lowest smectite/kaolinite ratios with deep profiles, moderate Ca2+/Mg2+ ratios, and the highest free Al-Fe oxide contents with kaolinite being the dominant clay mineral, whereas smectite was dominant in Groups 1 and 2. Thus, the significance of smectite/kaolinite ratios for structural stability studies in soils, and Ca2+ and Mg2+ contents, Ca2+/Mg2+ ratios, and free Al-Fe oxides are indices reflecting erodibility (such as the shallow Group 1 soils) that should be considered more susceptible to erosion.

___

  • Aggelides, S.M. and P.A. Londra. 2000. Effect of compost produced from town wastes and sewage sludge on the physical properties. Bioresource Tech. 71: 253-259.
  • Allison, L.E. 1965. Organic carbon. Walkley-Black Method. In: Methods of Analysis, (Ed. C.A. Black), Agronomy Monograph, No. 9. Part 2. American Society of Agronomy. Madison, Wisconsin, USA, pp. 1367-1378.
  • Allison, L.E. and C.D. Moodie. 1965. Carbonate volumetric calcimeter method. In: Methods of Analysis, (Ed. C.A. Black), Agronomy Monograph. No. 9. Part 2. American Society of Agronomy. Madison, Wisconsin, USA, pp. 1389-1392.
  • Birkeland, P.W. 1984. Soils and Geomorphology. Department of Geological Sciences, University of Colorado. Oxford University Press, New York, Oxford.
  • Blake, G.R. and K.H. Hartge. 1986. Bulk density. In: Methods of Soil Analysis, (Ed: A. Klute) Agronomy Monograph. No. 9. Part 1, ASA and Soil Science Society of America, Madison, Wisconsin, USA, pp. 363-375.
  • Bouyoucos, G.J. 1951. A recalibration of the hydrometer method for making mechanical analysis of soils. Agron. Jour. 43: 434-438.
  • Buhmann, C., I. Rapp and M.C. Laker. 1996. Differences in mineral ratios between disaggregated and original clay fractions in some South African soils as affected by amendments. Aust. J. Soil Res. 34: 909-923.
  • Danielson, R.E. and P.L. Sutherland. 1986. Porosity. In: Methods of Soil Analysis, (Ed: A. Klute), Agronomy Monograph. No. 9. Part 1, ASA and Soil Science Society of America, Madison, Wisconsin, USA, pp. 443-461.
  • Dixon, J.B. 1989. Kaolin and serpentine group minerals. In: Minerals in Soil Environments, (Ed: J.B. Dixon and S.B. Weed) Soil Science Society of America Book Series 1, Madison, Wisconsin, USA, pp. 467-525.
  • Dontsova, K.M. and L.D. Norton. 2002. Clay dispersion, infiltration, and erosion as influenced by exchangeable Ca and Mg. Soil Sci. Soc. Am. J. 167: 184-193.
  • El-Swaify, S.A. 1980. Physical and mechanical properties of oxisols. In: Soils with Variable Charge, (Ed: B.K.G. Theng), Offset Publ. Palmerston North, NZ. pp. 303-324.
  • Goldberg, S. and R.A. Glaubig. 1987. Effect of saturation cation, pH, and aluminum and iron oxide on the flocculation of kaolinite and montmorillonite. Clays Clay Min. 35: 220-227.
  • Hays, L.W. 1988. Statistics. 4th edition, Holt, Rinehart and Winston Inc., London. Hsu, P.H. 1963. Effect of initial pH, phosphate, and silicate on the determination of aluminium with aluminon. Soil Sci. 96: 230- 238.
  • Jackson, M.L. 1969. Soil chemical analysis. Advanced course. 2nd ed. published by the author. Univ. of Wisconsin. Madison. USA. Kember, W.D. and E.K. Koch. 1966. Aggregate stability of soils from western United States and Canada. Colorado Agric. Exp. Stn. Bull. no: 1355: 1-52. Agric. Res. Service, USDA, and Colorado Agric. Exp. Stn., Fort Collins, CO., USA.
  • Keren, R. 1991. Specific effect of magnesium on soil erosion and water infiltration. Soil Sci. Soc. Am. J. 55: 783-787.
  • Klute, A. and C. Dirksen. 1986. Hydraulic conductivity and diffusivity, Laboratory methods. In: Methods of Soil Analysis, (Ed: A. Klute) Part 1, Agronomy Monograph. 9. ASA and Soil Science Society of America, Madison, Wisconsin, USA, pp. 687-734.
  • Leo, M.A. 1963. A rapid method for estimating structural stability of soils. Soil Sci. 96: 342-346.
  • McLean, E.O. 1982. Soil pH and lime requirement. In: Methods of Soil Analysis, 2nd ed. (Ed: A.L. Page et al.) Part 2. Agronomy Monograph. No. 9. ASA, Madison, Wisconsin, USA, pp. 199-224.
  • Mermut, A.R., S.H. Luk, M.J.M. Romkens and J.W.A. Poesen. 1997. Soil loss by splash and wash during rainfall from two loess soils. Geoderma. 75: 203-214.
  • Oades, J.M. 1984. Interaction of polycations of Al and Fe with clays. Clays Clay Miner. 32: 49-57.
  • Reichert, J.M. and Norton, L.D. 1994. Aggregate stability and rainimpacted sheet erosion of air-dried and prewetted clayey surface soils under intense rain. Soil Sci. 158: 159-169.
  • Romkens, M.J.M., S.H. Luk, J.W.A. Poesen and A.R. Mermut. 1995. Rainfall infiltration into loess soils from different geographic regions. Catena. 25: 21-32.
  • Say›n, M. 1999. Soil mineralogy. Çukurova University, Agriculture Faculty, no: 227, A72. Adana, Turkey (in Turkish) pp. 69-86.
  • Seta, A.K and A.D. Karathanasis. 1996. Water dispersible colloids and factors influencing their dispersibilty from soil aggregates. Geoderma. 74: 255-266.
  • Shainberg, I. and M.J. Singer. 1990. Soil response to saline and sodic conditions. In: Agricultural Salinity Assessment and Management, (Ed: K.K. Tanji) Am. Soc. Civil Eng., St. Josephs, USA, p: 91-112.
  • Singer, A. 1994. Clay mineralogy as affecting dispersivity and crust formation in aridisols. In: Transactions of the 15th World Congress of Soil Science, (Ed: J.D. Etchevers), Acapulco, Mexico. Vol 8a. Int. Soc. Soil Sci. and Mexican Soc. Soil Sci., Acapulco, Mexico, p: 37-46.
  • Six, J., E.T. Elliott and K. Paustion. 2000. Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy. Soil Sci. Soc. Am. J. 64: 1042-1049 Soil Survey Staff. 1993. Soil survey manual. USDA handbook No. 18. Washington, USA.
  • Stern, R., M. Ben-Hur and I. Shainberg. 1991. Clay mineralogy on rain infiltration, seal formation and soil losses. Soil Sci. 152: 455-462.
  • Wakindiki, I.I.C. and M. Ben-Hur. 2002. Soil mineralogy and texture effects on crust micromorphology, infiltration, and erosion. Soil Sci. Soc. Am. J. 66: 897-905.
  • Warkentin, B.P. 1982. Clay soil structure related to soil management. Trop. Agric. (Trinidad). 59: 82-91.
  • Y›lmaz, K. 1990. The properties of Harran plain soils. Soil Science Department, Natural Applied Sciences, Çukurova University, Adana, Turkey (PhD Thesis) pp. 54-89.
  • Yilmaz, K. and Say›n, M. 1998. The quantitative clay analysis with multiplication factor on soil series of Çukurova Region. J. Sci. Eng., Kahramanmarafl Sütçü ‹mam University, Kahramanmarafl, Turkey, 2: 36-46.
  • Zebarth, B.J., G.H. Neilsen, E. Hogue and D. Neilsen. 1999. Influence of organic waste amendments on selected soil physical and chemical properties. Canadian J. Soil Sci. 79: 501-504.
Turkish Journal of Agriculture and Forestry-Cover
  • ISSN: 1300-011X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Palynological Study on the Pollen Grains of Selected Turkish Grape (Vitis vinifera L.) Cultivars

Birhan MARASALI

Kil Mineralleri, Ca/Mg Oranı ve Fe, Al Oksitlerin Strüktür Stabilitesi, Hidrolik ‹letkenlik ve Erozyon İlişkileri

Kadir YILMAZ*, İsmail ÇELİK, Selim KAPUR, John RYAN

Using advanced spectral anlayses techniques as possible means of identifying clay minerals

Mustafa BOLCA, Yusuf KURUCU, A.H. EL-NAHRY, Ünal ALTINBAŞ

Total Protein Content and SDS-PAGE in Pear Scions Grafted on Quince A and Pear Seedling Rootstocks

Hatice GÜLEN*

An investigation on the establishment of artificial pasture under Ankara' s ecological conditions

Hayrettin EKİZ, Sebahattin ALBAYRAK

Effects of Minimum and Conventional Tillage Systems on Soil Properties and Yield of Winter Wheat (Triticum aestivum L.) in Clay-Loam in the Çanakkale Region

Sakine ÖZPINAR, Anıl ÇAY

Cambial Isoperoxidases Related to Graft Compatibility in Pear-Quince Graft Combinations

Hatice GÜLEN*, Menşure ÇELİK, Mehmet POLAT, Atilla ERİŞ

Determining Some Yield and Quality Characteristics of Mutants Induced from a Durum wheat (Triticum durum Desf.) Cultivar

Mehmet Ali SAKİN*, Ahmet YILDIRIM, Sabri GÖKMEN

Using Advanced Spectral Analyses Techniques as Possible Means of Identifying Clay Minerals

Ünal ALTINBAŞ*, Yusuf KURUCU, Mustafa BOLCA

Total protein content and SDS-PAGE in pear socions grafted on quince A and pear seedling rootstocks

Rajeev ARORA, Joseph POSTMAN, Ali KÜDEN, Hatice GÜLEN