Investigation of morphoagronomic performance and selection indices in the international safflower panel for breeding perspectives

Developing high yielding safflower cultivars with good adaptation to diverse environmental conditions can improve production in terms of seed yield and reduce the deficiency in edible oil. The genetic variability that exists among and within populations for desirable agronomic traits can be used to develop elite cultivars. A total of 94 safflower accessions from 26 different countries were used in this study to evaluate morphoagronomic performance, determine the pattern of similarity centers, and identify the best performing accessions by conducting 2 field experiments in Pakistan and Turkey using augmented design. Genetic diversity for important yield and yield traits was described including capitulum diameter 17.30 to 28.30 mm , branches per plant 5.10 to 17.30 , capitula per plant 8.70 to 80.40 , and seed yield per plant 4.86 to 51.02 g . These analyses showed a good level of variation in the current study. Using principal component analysis, it was observed that days to flower initiation, days to 50% flowering, days to flower completion, seed yield per plant, capitula per plant, branches per plant, seeds per capitulum, and capitulum diameter were the major contributors to the observed genetic variability in the evaluated safflower panel. Seed yield per plant reflected a significant and positive correlation with capitula per plant, branches per plant, and capitulum diameter, and these traits can be suggested as a selection criterion in safflower breeding programs. The hierarchical clustering was in agreement with the patterns of 7 similarity centers based on seed yield per plant, capitula per plant, capitulum diameter, and branches per plant. During this study, a few promising safflower accessions were selected for future breeding programs.

___

  • Abebe D, Bjornstad A (1996). Genetic diversity of Ethiopian barley in relation to geographical regions, altitude range and agro-ecological zones as an aid to germplasm collection and conservation strategy. Hereditas 124: 17-29.
  • Ali F, Yılmaz A, Nadeem MA, Habyarimana E, Subaşı I et al. (2019). Mobile genomic element diversity in world collection of safflower (Carthamus tinctorius L.) panel using iPBSretrotransposon markers. PLoS One 14 (2). doi: 10.1371/ journal.pone.0211985
  • Arslan B (2007). The path analysis of yield and its components in safflower (Carthamus tinctorius L.). Journal of Biological Sciences 7 (4): 668-672.
  • Asare PA, Galyuon IKA, Sarfo JK, Tetteh JP (2011). Morphological and molecular based diversity studies of some cassava (Manihot esculenta Crantz) germplasm in Ghana. African Journal of Biotechnology 10 (63): 13900-13908.
  • Ashri A (1975). Evaluation of the germplasm collection of safflower, Carthamus tinctorius L. V. Distribution and regional divergence for morphological characters. Euphytica 24 (3): 651-659.
  • Ashri A, Zimmer DE, Urie AL, Knowles PF (1975). Evaluation of the germplasm collection of safflower (Carthamus tinctorius L.): VI. Length of planting to flowering period and plant height in Israel, Utah and Washington. Theoretical and Applied Genetics. 46 (7): 359-364.
  • Bagawan I, Ravikumar RL (2001). Strong undesirable linkages between seed yield and oil components-a problem in safflower improvement. In: Proceeding of the 5th International Safflower Conference; Sidney, MT, USA. pp. 103-107.
  • Bagheri A, Yazdani-Samadi B, Taeb M, Ahmadi MR (2001). Study of correlations and relation between plant yield and quantitative other trait in safflower. Iranian Journal of Agricultural Sciences 32: 295-307.
  • Baloch FS, Alsaleh A, Shahid MQ, Çiftçi V, de Miera LE et al. (2017). A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central Fertile Crescent. PLoS One 12: e0167821.
  • Baloch FS, Karaköy T, Demirbaş A, Toklu F, Özkan H et al. (2014). Variation of some seed mineral contents in open pollinated faba bean (Vicia faba L.) landraces from Turkey. Turkish Journal of Agriculture and Forestry 38 (5): 591-602.
  • Bidgoli AM, Akbari GA, Mirhadi MJ, Zand ED, Soufizadeh S (2006). Path analysis of the relationships between seed yield and some morphological and phenological traits in safflower (Carthamus tinctorius L.). Euphytica 148 (3): 261-268.
  • Bradley VL, Guenthner RL, Johnson RC, Hannan RM (1999). Evaluation of safflower germplasm for ornamental use. In: Janik J (editor). Perspectives on New Crops and New Uses. Alexandria, VA, USA: ASHS Press. pp. 433-435.
  • Camas N, Esendal E (2006). Estimation of broad-sense heritability for seed yield and yield components of safflower (Carthamus tinctorius L.). Hereditas 143: 55-57.
  • Cesur C, Eryilmaz T, Uskutoglu T, Doğan H, Coşge Şenkal B (2018). Cocklebur (Xanthium strumarium L.) seed oil and its properties as an alternative biodiesel source. Turkish Journal of Agriculture and Forestry 42: 29-37.
  • Chakravorty A, Ghosh PD, Sahu PK (2013). Multivariate analysis of phenotypic diversity of landraces of rice of West Bengal. American Journal of Experimental Agriculture 3 (1): 110-123.
  • Chapman MA, Hvala J, Strever J, Burke JM (2010). Population genetic analysis of safflower (Carthamus tinctorius L.; Asteraceae) reveals a near Eastern origin and five centers of diversity. American Journal of Botany 97 (5): 831-840. doi: 10.3732/ ajb.0900137
  • Chaudhary SK (1990). Path analysis for seed yield in safflower (Carthamus tinctorius L.) in acid soil under mid altitude conditions. International Journal of Tropical Agriculture 8 (2): 129-132.
  • Chaudhry AH (1986). Evaluation and Culture of Sunflower and Safflower in Dobari Lands of Sind. First Annual Report. PL480 Program of USDA. pp. 25.
  • Corleto A, Cazzato E, Vetricelli P (1997). Performance of hybrid and O.P. safflower in two different Mediterranean environments. In: Proceedings of the 4th International Safflower Conference; Bari, Italy. pp. 276-278.
  • Dwivedi SL, Upadhyaya HD, Hegde DM (2005). Development of core collection using geographic information and morphological descriptors in safflower (Carthamus tinctorius L.) germplasm. Genetic Resources and Crop Evolution 52 (7): 821-830.
  • FAOSTAT (2015). Food and Agriculture Organization of the United Nations. Rome, Italy.
  • Esendal E (1990). Samsun Ekolojik Şartlarında Kışlık ve Yazlık Olarak Ekilen Aspir (Carthamus tinctorius L.) Çeşitlerinin Verimi ve Bazı Özellikleri Üzerinde Bir Araştırma. Ondokuz Mayıs Üniversitesi. Ziraat Fakültesi Dergisi 5 (1–2): 49: 66 (in Turkish). Federer WT (1956). Augmented (or Hoonuiaku) designs. Hawaiian Planter’s Record 55 (2): 191-208.
  • Galiana-Belaguer L, Ibanez G, Cebolla-Cornejo J, Rosello S (2018). Evaluation of germplasm in Solanum section Lycopersicon for tomato taste improvement. Turkish Journal of Agriculture and Forestry 42: 309-321. Golkar P (2011). Genetic analysis of earliness and its components in safflower (Carthamus tinctorious L.). African Journal of Agricultural Research 6 (14): 3264-3271.
  • Golkar P, Arzani A, Rezaei AM (2011). Determining relationships among seed yield, yield components and morpho-phenological traits using multivariate analyses in safflower (Carthamus tinctorious L.). Annals of Biological Research 2 (3): 162-169.
  • Golkar P, Arzani A, Rezai AM (2010). Inheritance of flower colour and spinelessness in safflower (Carthamus tinctorius L.). Journal of Genetics 89 (2): 256-262.
  • Golkar P, Arzani A, Rezai AM (2012). Genetic analysis of agronomic traits in safflower (Carthamus tinctorious L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40 (1): 276-281.
  • Iqbal M, Hayat K, Khan RSA, Sadiq A, Noor-ul-Islam (2006).
  • Correlation and path coefficient analysis for earliness and yield traits in cotton (G. hirsutum L.). Asian Journal of Plant Sciences 5 (2): 341-344. doi: 10.3923/ajps.2006.341.344 Jaradat AA, Shahid M (2006). Patterns of phenotypic variation in a germplasm collection of Carthamus tinctorius L. from the Middle East. Genetic Resources and Crop Evolution 53 (2): 225-244.
  • Karaköy T, Baloch FS, Toklu F, Özkan H (2014). Variation for selected morphological and quality-related traits among 178 faba bean landraces collected from Turkey. Plant Genetic Resources 12 (1): 5-13.
  • Knowles PF (1969). Centers of plant diversity and conservation of crop germplasm: safflower. Economic Botany 23 (4): 324-329. Knowles PF, Ashri A (1995). Safflower: Carthamus tinctorius (Compositae). In: Smartt J, Simmonds NW (editors). Evolution of Crop Plants. 2nd ed. Harlow, England: Longman. pp. 47-50.
  • Knowles PF (1989). Safflower. In: Robbelen G, Downey RK, Ashri A (editors). Oil Crops of the World. New York, NY, USA: McGraw-Hill. pp. 363-374.
  • Kotecha A (1979). Inheritance and association of six traits in safflower. Crop Science 19 (4): 523-527.
  • Kumar S, Ambreen H, Murali TV, Bali S, Agarwal M et al. (2015). Assessment of genetic diversity and population structure in a global reference collection of 531 accessions of Carthamus tinctorius L. (Safflower) using AFLP markers. Plant molecular biology reporter 33 (5): 1299-1313.
  • Kumar S, Ambreen H, Variath MT, Rao AR, Agarwal M et al. (2016). Utilization of molecular, phenotypic, and geographical diversity to develop compact composite core collection in the oilseed crop, safflower (Carthamus tinctorius L.) through maximization strategy. Frontiers in Plant Science 7: 1554. doi: 10.3389/fpls.2016.01554
  • Mahasi MJ, Pathak RS, Wachira FN, Riungu TC, Kinyua MG et al. (2006). Correlations and path coefficient analysis in exotic safflower (Carthamus tinctorious L.) genotypes tested in the arid and semi arid lands (Asals) of Kenya. Asian Journal of Plant Sciences 5 (6): 1035-1038.
  • Mohammadi SA, Prasanna BM (2003). Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop science 43 (4): 1235-1248.
  • Mozaffari K, Asadi AA (2006). Relationships among traits using correlation, principal components and path analysis in safflower mutants sown in irrigated and drought stress condition. Asian Journal of Plant Sciences 5 (6): 977-983.
  • Murphy DJ (1999). The future of new and genetically modified oil crops. In: Janick J (editor). Perspectives on New Crops and New Uses. Alexandria, VA, USA: ASHS Press. pp. 216-219.
  • Nadeem MA, Habyarimana E, Çiftçi V, Nawaz MA, Karaköy T et al. (2018). Characterization of genetic diversity in Turkish common bean gene pool using phenotypic and whole-genome DArTseq-generated silicoDArT marker information. PloS one 13 (10): e0205363.
  • Nimbkar N (2008). Issues in safflower production in India. In: Safflower: Unexploited potential and world adaptability. In: Proceedings of the 7th International Safflower Conference; Wagga Wagga, New South Wales, Australia. pp. 1-9.
  • Omidi TAH (2000). Correlation between traits and path analysis for grain and oil yield in spring safflower. Sesame Safflower Newsletter 15: 78-82.
  • Özdemir IS, Karaoğlu O, Dağ C, Bekiroğlu S (2018). Assessment of sesame oil fatty acid and sterol composition with FTNIR spectroscopy and chemometrics. Turkish Journal of Agriculture and Forestry 42 (6): 444-452.
  • Özer S, Karaköy T, Toklu F, Baloch FS, Kilian B, Özkan H (2010). Nutritional and physicochemical variation in Turkish kabuli chickpea (Cicer arietinum L.) landraces. Euphytica 175 (2): 237-249.
  • Padulosi S, Eyzaquirre P, Hodgkin T (1999). Challenges and strategies in promoting conservation and use of neglected and underutilized crop species. In: Janick J (editor). Perspectives on New Crops and New Uses. Alexandria, VA, USA: ASHS Press, pp. 140-145.
  • Pascual-Villalobos MJ, Alburquerque N (1996). Genetic variation of a safflower germplasm collection grown as a winter crop in southern Spain. Euphytica 92 (3): 327-332.
  • Ramachandran M (1985). Genetic improvement of yield in safflower problems and prospects. Journal of Oilseeds Research 2: 1-9. Rao V, Ramachandram M (1997). An analysis of association of yield and oil in safflower. In: Fourth International Safflower Conference; Bari, Italy. pp. 2-7.
  • Rathore A, Parsad R, Gupta VK (2004). Computer aided construction and analysis of augmented designs. Journal of the Indian Society of Agricultural Statistics 57: 320-344.
  • Rehman AU, Habib I, Ahmad N, Hussain M, Khan MA et al. (2009). Screening wheat germplasm for heat tolerance at terminal growth stage. Plant Omics Journal 2 (1): 9-19.
  • Sahin U, Anapali O, Ercisli S (2002). Physico-chemical and physical properties of some substrates used in horticulture. Gartenbauwissenschaft 67 (2): 55-60.
  • Serce S, Ercisli S, Sengul M, Gunduz K, Orhan E (2010). Antioxidant activities and fatty acid composition of wild grown myrtle (Myrtus communis L.) fruits. Pharmacognosy Magazine 6: 9-12 Sergek Y (2001). Aspir (Carthamus tinctorius L.)‘de Uygun Ekim Zamanı, Çeşit ve Sıra Aralığının Belirlenmesi. MA, Ankara University, Ankara, Turkey (in Turkish).
  • Sharaan AN, Ghallab KH (1997). Character associations at different locations in sesame. Sesame Safflower Newsletter 12: 66-75.
  • Shinwari ZK, Rehman H, Rabbani MA (2014). Morphological traits based genetic diversity in safflower (Carthamus tinctorius L.). Pakistan Journal of Botany 46 (4): 1389-1395.
  • Shivani D, Sreelakshmi CH, Kumar CV (2010). Genetic divergence studies in safflower (Carthamus tinctorius L.). Electronic Journal of Plant Breeding 1 (5): 1354-1357.
  • Singh V, Deshpande MB, Choudhari SV, Nimbkar N (2004). Correlation and path coefficient analysis in safflower (Carthamus tinctorius L.). Sesame Safflower Newsletter 19: 77- 81.
  • Suddihiyam P, Steer BT, Turner DW (1992). The flowering of sesame (Sesamum indicum L.) in response to temperature and photoperiod. Australian Journal of Agricultural Research 43 (5): 1101-116.
  • Thies E (2000). Promising and underutilized species: crops and breeds.. In Managing Agrobiodiversity in Rural Areas Report. Eschborn, Germany: Deutsche Gesellschaft fur Technische Zusam-menarbeit GmbH.
  • Tuncturk M, Ciftci V (2004). Relationships among traits using correlation and path coefficient analysis in safflower (Carthamus tinctorius L.) sown different fertilization levels and row spacing. Asian Journal of Plant Sciences 3 (6): 683-686.
  • Vollmann J, Grausgruber H, Stift G, Dryzhyruk V, Lelley T (2005). Genetic diversity in Camelina germplasm as revealed by seed quality characteristics and RAPD polymorphism. Plant Breeding 124 (5): 446-453.
  • Vom Brocke K, Christnck A, Weltzien E, Presterl RT, Geiger HH (2003). Farmers’ seed systems and management practices determine pearl millet genetic diversity patterns in semiarid regions of India. Crop Science 43 (5): 1680-1689.
  • Weiss EA (2000). Oil Seed Crops. 2nd ed. Oxford, UK: Blackwell Science, Ltd.
  • Yaldiz G, Camlica M, Nadeem MA, Nawaz MA, Baloch FS (2018). Genetic diversity assessment in Nicotiana tabacum L. with iPBS-retrotransposons. Turkish Journal of Agriculture and Forestry 42 (3): 154-164.
  • Zheng N, Futang C, Xinchun S, Yancai W (1993). Path analysis of correlated characters on flower yield of safflower individuals. In: Proceedings of the 3rd International Safflower Conference; Beijing, China. pp. 582-588.