Induction of polyploidy in grapevine (Vitis vinifera L.) seedlings by in vivo colchicine applications

Induction of polyploidy in grapevine (Vitis vinifera L.) seedlings by in vivo colchicine applications

Polyploidization is an important technique used in grape breeding to create new genetic resources and can be induced using some antimitotic agents, including colchicine. Plants with increased ploidy can gain better quality than their original diploids in some characteristics. In this study, which was carried out to obtain polyploid genotypes under in vivo conditions, the effects of six (1 g L–1 , 2 g L–1 , 3 g L–1 , 4 g L–1 , 5 g L–1 , 6 g L-1) doses of colchicine were applied to the shoot tip meristem regions of the seedlings obtained from the seeds of grapevine cv. Ekşi Kara and cv. Trakya İlkeren, for three consecutive days and twice a day (at 08.30 and 18.00 h) were investigated. The effects of mutagen were evaluated by following the treated seedlings’ morphological changes and comparing them with the ‘Kyoho’ (4x) by flow cytometry (FC) analysis. In surviving plants after treatment, stomatal characteristics differed to varying degrees from their original diploids, and stomatal density decreased inversely with the increase in stomatal size in polyploid genotypes. Among cv. Ekşi Kara seedlings, 1 tetraploid (5 g L–1 ), and cv. Trakya İlkeren seedlings, 1 mixoploid (2 g L–1 ), and 1 tetraploid (6 g L–1 ) genotypes were selected by stomatal characteristics, chloroplast numbers, and confirmed by FC analysis. It was determined that colchicine is an effective mutagen in the breeding of polyploid grapevine, and stomatal observations, chloroplast numbers, and FC analysis are useful methods for obtaining confirmed results in the selection of polyploid genotypes.

___

  • Acanda Y, Martínez Ó, González M, Prado M, Rey M (2015). Highly efficient in vitro tetraploid plant production via colchicine treatment using embryogenic suspension cultures in grapevine (Vitis vinifera cv. Mencía). Plant Cell, Tissue and Organ Culture 123 (3): 547-555. doi: 10.1007/s11240-015-0859-3
  • Castro M, Castro S, Loureiro J (2018). Production of synthetic tetraploids as a tool for polyploid research. Web Ecology 18 (2): 129-141. doi: 10.5194/we-18-129-2018
  • Cimen B (2020). Induction of polyploidy in C35 citrange through in vitro colchicine treatments of seed-derived explants. International Journal of Fruit Science: 1-13. doi: 10.1080/15538362.2020.1837051
  • Cohen H, Fait A, Tel-Zur N (2013). Morphological, cytological and metabolic consequences of autopolyploidization in Hylocereus (Cactaceae) species. BMC plant biology 13 (1): 173. doi: 10.1186/1471-2229-13-173
  • Corneillie S, De Storme N, Van Acker R, Fangel JU, De Bruyne M et al. (2019). Polyploidy affects plant growth and alters cell wall composition. Plant Physiology 179 (1): 74-87. doi: 10.1104/ pp.18.00967
  • Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J (2011). Mitotic chromosome doubling of plant tissues in vitro. Plant Cell, Tissue and Organ Culture 104 (3): 359-373. doi: 10.1007/s11240- 010-9786-5
  • Di Genova A, Almeida A, Muñoz-Espinoza C, Vizoso P, Travisany D et al. (2014). Whole genome comparison between table and wine grapes reveals a comprehensive catalog of structural variants. BMC plant biology 14 (1): 7. doi: 10.1186/1471-2229-14-7
  • Ebrahimzadeh H, Soltanloo H, Shariatpanahi ME, Eskandari A, Ramezanpour SS (2018). Improved chromosome doubling of parthenogenetic haploid plants of cucumber (Cucumis sativus L.) using colchicine, trifluralin, and oryzalin. Plant Cell, Tissue and Organ Culture (PCTOC) 135 (3): 407-417. doi: 10.1007/ s11240-018-1473-y
  • Ekbic H, Tangolar S (2016). Possibilities to generate polyploidy using different colchicine doses in Trakya İlkeren and Flame Seedless grape cultivars. Akademik Ziraat Dergisi 5 (2): 69-76 (in Turkish with an abstract in English).
  • Eng W-H, Ho W-S (2019). Polyploidization using colchicine in horticultural plants: a review. Scientia Horticulturae 246: 604- 617. doi: 10.1016/j.scienta.2018.11.010
  • Fox DT, Soltis DE, Soltis PS, Ashman T-L, Van de Peer Y (2020). Polyploidy: a biological force from cells to ecosystems. Trends in Cell Biology. doi: 10.1016/j.tcb.2020.06.006
  • Germanà M (2012). Use of irradiated pollen to induce parthenogenesis and haploid production in fruit crops. Plant Mutation Breeding and Biotechnology: 411-421. doi: 10.1079/9781780640853.0411
  • Gomes SSL, Saldanha CW, Neves CS, Trevizani M, Raposo NRB et al. (2014). Karyotype, genome size, and in vitro chromosome doubling of Pfaffia glomerata (Spreng.) Pedersen. Plant Cell, Tissue and Organ Culture (PCTOC) 118 (1): 45-56. doi: 10.1007/s11240-014-0460-1
  • Hassan J, Miyajima I, Ozaki Y, Mizunoe Y, Sakai K et al. (2020). Tetraploid Induction by colchicine treatment and crossing with a diploid reveals less-seeded fruit production in Pointed Gourd (Trichosanthes dioica Roxb.). Plants 9 (3): 370. doi: 10.3390/ plants9030370
  • He M, Gao W, Gao Y, Liu Y, Yang X et al. (2016). Polyploidy induced by colchicine in Dendranthema indicum var. aromaticum, a scented chrysanthemum. European Journal of Horticulture Science 81 (4): 219-226.
  • Hoang TK, Hwang Y-J, Lim J-H (2020). Chemical polyploidization of Chrysanthemum boreale. Plant Cell, Tissue and Organ Culture (PCTOC) 140 (3): 677-683. doi: 10.1007/s11240-019-01761-w
  • Huy NP, Luan VQ, Tung HT, Hien VT, Ngan HTM et al. (2019). In vitro polyploid induction of Paphiopedilum villosum using colchicine. Scientia horticulturae 252: 283-290. doi: 10.1016/j. scienta.2019.03.063
  • Julião SA, Ribeiro CdV, Lopes JML, Matos EMd, Reis AC et al. (2020). Induction of synthetic polyploids and assessment of genomic stability in Lippia alba. Frontiers in Plant Science 11: 292. doi: 10.3389/fpls.2020.00292
  • Kara Z, Yazar K (2018). In vivo polyploidy induction by colchicine in grape cultivar Ekşi Kara’ (Vitis vinifera L.), XXX International Horticultural Congress IHC2018: International Symposium on Viticulture: Primary Production and Processing 1276, 139-146.
  • Kara Z, Yazar K (2020). In vitro poliploidy induction in some grape cultivars. Anadolu Journal of Agricultural Sciences 35 (3): 410-418 (in Turkish with an abstract in English). doi: 10.7161/ omuanajas.768710
  • Kara Z, Doğan O, Yazar K, Sabır A (2018). Morphological and cytological effects of in vivo colchicine applications to 41B Rootstocks. Selcuk Journal of Agriculture And Food Sciences 32 (1): 8-13 (in Turkish with an abstract in English). doi: 10.15316/SJAFS.2018.57
  • Kara Z, Sabır A, Yazar K, Doğan O, Omar A (2017). Fruitfulness of ancient grapevine variety ‘Ekşi Kara’ (Vitis vinifera L.). Selcuk Journal of Agriculture And Food Sciences 31 (3): 62-68. doi: 10.15316/SJAFS.2017.36
  • Liu G, Li Z, Bao M (2007). Colchicine-induced chromosome doubling in Platanus acerifolia and its effect on plant morphology. Euphytica 157 (1-2): 145-154. doi: 10.1007/s10681-007-9406-6
  • Lu Y, Chen J, Xiao M, Li W, Miller DD (2012). An overview of tubulin inhibitors that interact with the colchicine binding site. Pharmaceutical Research 29 (11): 2943-2971. doi: 10.1007/ s11095-012-0828-z
  • Luo Z, Iaffaldano BJ, Cornish K (2018). Colchicine-induced polyploidy has the potential to improve rubber yield in Taraxacum kok-saghyz. Industrial Crops and Products 112: 75- 81. doi: 10.1016/j.indcrop.2017.11.010
  • Manzoor A, Ahmad T, Bashir MA, Baig MMQ, Quresh AA et al. (2018). Induction and identification of colchicine induced polyploidy in Gladiolus grandiflorus ‘White Prosperity’. Folia Horticulturae 30 (2): 307-319. doi: 10.2478/fhort-2018-0026
  • Moghbel N, Borujeni M, Bernard F (2015). Colchicine effect on the DNA content and stomata size of Glycyrrhiza glabra var. glandulifera and Carthamus tinctorius L. cultured in vitro. Journal of Genetic Engineering and Biotechnology 13 (1): 1-6. doi: 10.1016/j.jgeb.2015.02.002
  • Niazian M, Nalousi AM (2020). Artificial polyploidy induction for improvement of ornamental and medicinal plants. Plant Cell, Tissue and Organ Culture (PCTOC): 1-23. doi: 10.1007/ s11240-020-01888-1
  • Notsuka K, Tsuru T, Shiraishi M (2000). Induced polyploid grapes via in vitro chromosome doubling. Journal of The Japanese Society for Horticultural Science 69 (5): 543-551. doi: 10.2503/ jjshs.69.543
  • Olmo H (1937). Chromosome numbers in the European grape (Vitis vinifera). Cytologia (1): 606-613. doi: 10.1508/cytologia. FujiiJubilaei.606
  • Pan-Pan H, Wei-Xu L, Hui-Hui L (2018). In vitro induction and identification of autotetraploid of Bletilla striata (Thunb.) Reichb. f. by colchicine treatment. Plant Cell, Tissue and Organ Culture 132 (3): 425-432. doi: 10.1007/s11240-017-1339-8
  • Park K, Yun H, Seo H, Jeong S, Chung K et al. (2004). Breeding of a black table grape cultivar’Heukgoosul’(Vitis sp.) with large berries and high quality. Korean Journal of Horticultural Science and Technology 22 (4): 462-466.
  • Pazuki A, Aflaki F, Gürel E, Ergül A, Gürel S (2018). Gynogenesis induction in sugar beet (Beta vulgaris) improved by 6 benzylaminopurine (BAP) and synergized with cold pretreatment. Sugar Tech 20 (1): 69-77. doi: 10.1007/s12355- 017-0522-x
  • Planchais S, Glab N, Inzé D, Bergounioux C (2000). Chemical inhibitors: a tool for plant cell cycle studies. Febs Letters 476 (1-2): 78-83. doi: 10.1016/S0014-5793(00)01675-6
  • Rezende L, Suzigan J, Amorim FW, Moraes AP (2020). Can plant hybridization and polyploidy lead to pollinator shift? Acta Botanica Brasilica 34 (2): 229-242. doi: 10.1590/0102- 33062020abb0025
  • Sabır A, Kara Z (2011). Giberelik asit ve nanoteknolojik kalsit uygulamalarının asma tohumlarının çimlenmeleri üzerine etkileri. Türkiye VI. Ulusal Bahçe Bitkileri Kongresi. Şanlıurfa: 135-139 (in Turkish).
  • Sattler M, Carvalho C, Clarindo W (2016). The polyploidy and its key role in plant breeding. Planta 243 (2): 281-296. doi: 10.1007/ s00425-015-2450-x
  • Scholes DR (2020). Ploidy in plant tolerance to apical meristem damage: a test of relative costs and benefits. International Journal of Plant Sciences 181 (5): 509-517.
  • Sivakumar G, Alba K, Phillips GC (2017). Biorhizome: A biosynthetic platform for colchicine biomanufacturing. Frontiers in Plant Science 8: 1137. doi: 10.3389/fpls.2017.01137
  • Soltis DE, Visger CJ, Marchant DB, Soltis PS (2016). Polyploidy: pitfalls and paths to a paradigm. American Journal of Botany 103 (7): 1146-1166. doi: 10.3732/ajb.1500501
  • Talebi SF, Saharkhiz MJ, Kermani MJ, Sharafi Y, Raouf Fard F (2017). Effect of different antimitotic agents on polyploid induction of anise hyssop (Agastache foeniculum L.). Caryologia 70 (2): 184- 193. doi: 10.1080/00087114.2017.1318502
  • Tsukaya H (2008). Controlling size in multicellular organs: focus on the leaf. PLoS Biology 6 (7): e174. doi: 10.1371/journal. pbio.0060174
  • Van de Peer Y, Mizrachi E, Marchal K (2017). The evolutionary significance of polyploidy. Nature Reviews Genetics 18 (7): 411. doi: 10.1038/nrg.2017.26
  • Walker A, Lee E, Robinson S (2006). Two new grape cultivars, bud sports of Cabernet Sauvignon bearing pale-coloured berries, are the result of deletion of two regulatory genes of the berry colour locus. Plant Molecular Biology 62 (4-5): 623-635. doi: 10.1007/s11103-006-9043-9
  • Xie X, Agüero C, Wang Y, Walker M (2015). In vitro induction of tetraploids in Vitis x Muscadinia hybrids. Plant Cell, Tissue and Organ Culture 122 (3): 675-683. doi: 10.1007/s11103-006- 9043-9
  • Yamada M, Sato A (2016). Advances in table grape breeding in Japan. Breeding Science 66 (1): 34-45. doi: 10.1270/jsbbs.66.34
  • Yuan S, Liu Y-M, Fang Z-Y, Yang L-M, Zhuang M et al. (2009). Study on the relationship between the ploidy level of microsporederived plants and the number of chloroplast in stomatal guard cells in Brassica oleracea. Agricultural Sciences in China 8 (8): 939-946. doi: 10.1016/S1671-2927(08)60298-9
  • Yue Y, Zhu Y, Fan X, Hou X, Zhao C et al. (2017). Generation of octoploid switchgrass in three cultivars by colchicine treatment. Industrial Crops and Products 107: 20-21. doi: 10.1016/j.indcrop.2017.05.021
Turkish Journal of Agriculture and Forestry-Cover
  • ISSN: 1300-011X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Multidimensional scaling analysis of sensory characteristics and quantitative traits in wild apricots

Said EFE DOST, Rabia ALBAYRAK DELİALİOĞLU, Ali KESİK, Zahide KOCABAŞ, Hatice DUMANOĞLU, Veli ERDOĞAN

Ameliorative effects of nitric oxide on growth, physiology and biochemistry of chickpea plants under salinity stress

Esin DADAŞOĞLU

Effect of egg white protein and agar-agar on quality of button mushrooms (Agaricus bisporus) during cold storage

Şeyda ÇAVUŞOĞLU, Yusuf UZUN, Erkan EREN, Nurettin YILMAZ, Duygu ALPASLAN, Erdi Yıldırım ŞARAN

Morphological, biochemical, and bioactive characterization of naturally grown European cranberrybush genotypes

Kerem MERTOĞLU, İbrahim BULDUK, Ayşen Melda ÇOLAK, Fatma ALAN

Inter-primer binding site (iPBS) retrotransposon markers provide insights into the genetic diversity and population structure of carrots (Daucus, Apiaceae)

Mehtap YILDIZ, Carlos I. ARBIZU

Induction of polyploidy in grapevine (Vitis vinifera L.) seedlings by in vivo colchicine applications

Kevser YAZAR, Zeki KARA

Research on the potential of some sweet sorghum genotypes as bioethanol source under Mediterranean conditions

Rüştü HATİPOĞLU, Celal YÜCEL, Derya YÜCEL, Ismail DWEIKAT

Yield and oil composition of peppermint cultivars grown in the Isparta climate of Turkey

Kemal YILMAZ, İsa TELCİ

Medicinal and aromatic plants in the omics era: application of plant breeding and biotechnology for plant secondary metabolite production

Muhammad Azhar NADEEM, Faheem Shehzad BALOCH, Muzaffer BARUT, Muhammad AASIM, Muhammad Tanveer ALTAF, Özlem AKGÜR, Leyla Sezen TANSI

Characterization of some local pea (Pisum sativum L.) genotypes for agro-morphological traits and mineral concentrations

Ayfer ALKAN TORUN, Dürdane MART, Tolga KARAKÖY, Aybegün TON, Meltem TÜRKERİ, Adem Emin ANLARSAL