Individual and combined effect of drought and heat stresses in contrasting potato cultivars overexpressing miR172b-3p

Individual and combined effect of drought and heat stresses in contrasting potato cultivars overexpressing miR172b-3p

MicroRNAs (miRNAs) are essential players of plant defence systems because of their involvement in reprogramming gene expression under adverse environmental conditions including drought and heat, which are considered major players in limiting crop productivity. miR172b-3p was previously determined as a remarkable stress-responsive miRNA in our next-generation sequencing (NGS) analysis in potato. This study aims to understand the functions of miR172b-3p and its target (ERTF RAP2-7-like) under drought, heat, and combined treatments by overexpressing the miR172b-3p in stress-tolerant (Unica) and sensitive (Russet Burbank) potato cultivars. miR172b-3p overexpression in transgenic lines suppressed the ERTF RAP2-7-like expression leading to enhanced carbon fixation efficiency. Meanwhile, the accumulation of hydrogen peroxide (H2 O2 ) was reduced in both cultivars, proving that it is involved in the front-line tolerance mechanism against individual drought, heat, and their combination. In conclusion, our results prove that the stress tolerance could be enhanced by miR172b-3p-mediated negative regulation of ERTF RAP2-7-like gene in potato under drought, heat, and their combination. Our findings represent the first step towards the improvement of tolerance against multiple abiotic stresses in potato.

___

  • Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK (2010). Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stressresponsive genes. Molecular Biology Reports 37: 1125-1135. doi: 10.1007/s11033-009-9885-8
  • Ahmed W, Xia Y, Zhang H, Li R, Bai G et al. (2019). Identification of conserved and novel miRNAs responsive to heat stress in flowering Chinese cabbage using high-throughput sequencing. Scientific Reports 9: 1-11. doi: 10.1038/s41598- 019-51443-y
  • Bagga S, Bracht J, Hunter S, Massirer K, Holtz J et al. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122: 553-563. doi: 10.1016/j.cell.2005.07.031
  • Bakhsh A, Hussain T, Rahamkulov I, Demirel U, Çaliskan ME (2020). Transgenic potato lines expressing CP4-EPSP synthase exhibit resistance against glyphosate. Plant Cell, Tissue and Organ Culture 140: 23-34. doi: 10.1007/s11240-019-01708-1
  • Barah P, BN MN, Jayavelu ND, Sowdhamini R, Shameer K, Bones AM (2016). Transcriptional regulatory networks in Arabidopsis thaliana during single and combined stresses. Nucleic Acids Research 44: 3147-3164. doi: 10.1093/nar/gkv1463
  • Basu PS, Minhas JS (1991). Heat tolerance and assimilate transport in different potato genotypes. Journal of Experimental Botany 42: 861–866. doi: 10.1093/jxb/42.7.861
  • Bates LS, Waldren RP, Teare ID (1973). Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207. doi: 10.1007/BF00018060
  • Beetge L, Krüger K (2019). Drought and heat waves associated with climate change affect performance of the potato aphid Macrosiphum euphorbiae. Scientific Reports 9: 1-9. doi: 10.1038/s41598-018-37493-8
  • Chen J, Pan A, He S, Su P, Yuan X et al. (2020). Different microRNA families involved in regulating high temperature stress response during Cotton (Gossypium hirsutum L.) anther development. International Journal of Molecular Sciences 21: 1280. doi: 10.3390/ijms21041280
  • Cui LG, Shan JX, Shi M, Gao JP, Lin HX (2014). The miR156- SPL 9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant Journal 80: 1108-1117. doi: 10.1111/tpj.12712
  • Demirel U, Caliskan S, Yavus C, Tindas I, Polgar Z et al. (2017). Assessment of morphophysiological traits for selection of heattolerant potato genotypes. Turkish Journal of Agriculture and Forestry 41: 218-232. doi: 10.3906/tar-1701-95
  • Demirel U, Morris WL, Ducreux LJ, Yavuz C, Asim A et al. (2020). Physiological, biochemical, and transcriptional responses to single and combined abiotic stress in stress-tolerant and stresssensitive potato genotypes. Frontiers in Plant Science 11: 169. doi: 10.3389/fpls.2020.00169
  • Díaz-Manzano FE, Cabrera J, Ripoll JJ, del Olmo I, Andrés MF et al. (2018). A role for the gene regulatory module microRNA172/TARGET OF EARLY ACTIVATION TAGGED 1/FLOWERING LOCUS T (mi RNA 172/TOE 1/FT) in the feeding sites induced by Meloidogyne javanica in Arabidopsis thaliana. New Phytologist 217: 813-827. doi: 10.1111/ nph.14839
  • Ebert MS, Sharp PA (2012). Roles for microRNAs in conferring robustness to biological processes. Cell 149: 515-524. doi: 10.1016/j.cell.2012.04.005
  • Ebrahimi Khaksefidi R, Mirlohi S, Khalaji F, Fakhari Z, Shiran B et al. (2015). Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus. Frontiers in Plant Science 6: 741. doi: 10.3389/fpls.2015.00741
  • Ferdous J, Hussain SS, Shi BJ (2015). Role of micro RNA s in plant drought tolerance. Plant Biotechnology Journal 13: 293-305. doi: 10.1111/pbi.12318
  • Frazier TP, Sun G, Burklew CE, Zhang B (2011). Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Molecular biotechnology 49: 159-165. doi: 10.1007/ s12033-011-9387-5
  • Gai YP, Li YQ, Guo FY, Yuan CZ, Mo YY et al. (2014). Analysis of phytoplasma-responsive sRNAs provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease. Scientific Reports 4: 5378. doi: 10.1038/srep05378
  • Giberti S, Funck D, Forlani G (2014). Δ1-pyrroline-5-carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co-substrate. The New Phytologist 202: 911-91. doi: 10.1111/nph.12701
  • Gupta OP, Sharma P (2013). Potential role of small RNAs during stress in plants. In: Gaur RK, Sharma P (editors). Molecular approaches in plant abiotic stress. CRC Press, Boca Raton, pp. 67-89.
  • Gutiérrez-Rosales RO, Espinoza-Trelles JA, Bonierbale M (2007). UNICA: variedad Peruana para mercado fresco y papa frita con tolerancia yresistencia para condiciones climáticas adversas. Revista Latinoamericana de la Papa 14: 41-50. doi: 10.37066/ralap.v14i1.143
  • Han Y, Zhang X, Wang Y, Ming F (2013). The suppression of WRKY44 by GIGANTEA-miR172 pathway is involved in drought response of Arabidopsis thaliana. PLoS One 8: e73541. doi: 10.1371/journal.pone.0073541
  • Heath RL, Packer L (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125: 189-198. doi: 10.1016/0003-9861(68)90654-1
  • Hoang XLT, Thu NBA, Thao NP, Tran LSP (2014). Transcription factors in abiotic Stress responses: their potentials in crop improvement. In: Ahmad P, Wani MR, Azooz MM, Tran LSP (editors). Improvement of crops in the era of climatic changes. Springer, New York, pp. 337-366.
  • Hwang EW, Shin SJ, Park SC, Jeong MJ, Kwon HB (2011). Identification of miR172 family members and their putative targets responding to drought stress in Solanum tuberosum. Genes & Genomics 33: 105. doi: 10.1007/s13258-010-0135-1
  • Jones-Rhoades MW, Bartel DP (2004). Computational identification of plant microRNAs and their targets, including a stressinduced miRNA. Molecular Cell 14:787-799. doi: 10.1016/j. molcel.2004.05.027
  • Jung JH, Seo PJ, Kang SK, Park CM (2011). miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Molecular Biology 76: 35-45. doi: 10.1007/s11103-011-9759-z
  • Kaplan E (2017). Patateste kuraklık ve yüksek sıcaklık streslerine tepkide rol oynayan mirna’ların yeni nesil dizileme yöntemi ile belirlenmesi. Master’s thesis, Niğde Ömer Halisdemir Üniversity Niğde, Turkey.
  • Kavas M, Gökdemir G, Seçgin Z, Bakhsh A (2020). Ectopic expression of common bean ERF transcription factor PvERF35 promotes salt stress tolerance in tobacco. Plant Biology 22 (6): 1102-1112. doi: 10.1111/plb.13167
  • Kirkman MA (2007). Global markets for processed potato products. In: Vreudgenhil D, Gebhardt C, Govers F, Mackerron DKL, Taylor MA, Ross HA (editors). Potato biology and biotechnology advances and perspectives. Elsevier, pp. 27-24.
  • Knipp G, Honermeier B (2006). Effect of water stress on proline accumulation of genetically modified potatoes (Solanum tuberosum L.) generating fructans. Journal of Plant Physiology 163: 392-397. doi: 10.1016/j.jplph.2005.03.014
  • Kuang L, Shen Q, Wu L, Yu J, Fu L et al. (2019). Identification of microRNAs responding to salt stress in barley by high-throughput sequencing and degradome analysis. Environmental and Experimental Botany 160: 59-70. doi: 10.1016/j.envexpbot.2019.01.006
  • Lauter N, Kampani A, Carlson S, Goebel M, Moose SP (2005). microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proceedings of National Academy of Sciences of United States of America 102: 9412–9417. doi: 10.1073/pnas.0503927102
  • Li Y, Lu YG, Shi Y, Wu L, Xu YJ et al. (2014). Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiology 164: 1077–1092. doi: 10.1104/ pp.113.230052
  • Li W, Wang T, Zhang Y, Li Y (2016). Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. Journal of Experimental Botany 67: 175-194. doi: 10.1093/jxb/erv450
  • Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25: 402-408. doi: 10.1006/meth.2001.1262
  • Lopes MS, Reynolds MP, McIntyre CL, Mathews KL, Kamali MJ et al. (2013). QTL for yield and associated traits in the Seri/ Babax population grown across several environments in Mexico, in the West Asia, North Africa, and South Asia regions. Theoretical and Applied Genetics 126: 971-984. doi: 10.1007/s00122-012-2030-4
  • Loreto F, Velikova V (2001). Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology 127: 1781-1787. doi: 10.1104/ pp.010497
  • Luan Y, Cui J, Li J, Jiang N, Liu P et al. (2018). Effective enhancement of resistance to Phytophthora infestans by overexpression of miR172a and b in Solanum lycopersicum. Planta 247: 127-138. doi: 10.1007/s00425-017-2773-x
  • Margutti MP, Reyna M, Meringer MV, Racagni GE, Villasuso AL (2017). Lipid signalling mediated by PLD/PA modulates proline and H2 O2 levels in barley seedlings exposed to short-and longterm chilling stress. Plant Physiology and Biochemistry 113: 149-160. doi: 10.1016/j.plaphy.2017.02.008
  • Marmisolle FE, Arizmendi A, Ribone A, Rivarola M, García ML et al. (2020). Up-regulation of microRNA targets correlates with symptom severity in Citrus sinensis plants infected with two different isolates of citrus psorosis virus. Planta 251: 7. doi: 10.1007/s00425-019-03294-0
  • Mathieu J, Yant LJ, Mürdter F, Küttner F, Schmid M (2009). Repression of flowering by the miR172 target SMZ. PLoS Biology 7: e1000148. doi: 10.1371/journal.pbio.1000148
  • Matthews C, Arshad M, Hannoufa A (2019). Alfalfa response to heat stress is modulated by microRNA156. Plant Physiology 165: 830-842. doi: 10.1111/ppl.12787
  • May P, Liao W, Wu Y, Shuai B, McCombie WR et al. (2013). The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development. Nature Communications 4: 1-11. doi: 10.1038/ncomms3145
  • Mohanty P, Matysik J (2001). Effect of proline on the production of singlet oxygen. Amino acids 2: 195-200.
  • Moldovan D, Spriggs A, Yang J, Pogson BJ, Dennis ES et al. (2010). Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. Journal of Experimental Botany 61: 165-177. doi: 10.1093/jxb/erp296
  • Monneveux P, Ramirez DA, Pino MT (2013). Drought tolerance in potato (S. tuberosum L.): can we learn from drought tolerance research in cereals?. Plant Science 205: 76-86. doi: 10.1016/j. plantsci.2013.01.011
  • Muleta HD, Aga MC (2019). Role of nitrogen on potato production: a review. Journal of Plant Sciences 7: 36-42. doi: 10.11648/j. jps.20190702.11
  • Murashige T, Skoog F (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiology 15: 473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x
  • Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S et al. (2010). Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proceedings of the National Academy of Sciences of the United States of America 107: 490-495. doi: 10.1073/ pnas.0909097107
  • Nicot N, Hausman JF, Hoffmann L, Evers D (2005). Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany 56: 2907-2914. doi: 10.1093/jxb/eri285
  • Nonogaki H (2010). MicroRNA gene regulation cascades during early stages of plant development. Plant Cell Physiology 51: 1840–1846. doi: 10.1093/pcp/pcq154
  • Ozden M, Demirel U, Kahraman A (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2 O2 . Scientia Horticulturae 119: 163-168. doi: 10.1016/j.scienta.2008.07.031
  • Pihlanto A, Akkanen S, Korhonen HJ (2008). ACE-inhibitory and antioxidant properties of potato (Solanum tuberosum). Food Chemistry 109: 104-112. doi: 10.1016/j.foodchem.2007.12.023
  • Rejeb KB, Abdelly C, Savouré A (2014). How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry 80: 278-284. doi: 10.1016/j.plaphy.2014.04.007
  • Rizhsky L, Liang H, Mittler R (2002). The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology 130: 1143–1152. doi: 10.1104/pp.006858
  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S et al. (2004). When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress. Plant Physiology 134: 1683-1696. doi: 10.1104/pp.103.033431
  • Rolando JL, Ramírez DA, Yactayo W, Monneveux P, Quiroz R (2015). Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environmental and Experimental Botany 110: 27-35. doi: 10.1016/j.envexpbot.2014.09.006
  • Ruban AV (2016). Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiolgy 170: 1903-1916. doi: 10.1104/pp.15.01935
  • Sailaja B, Voleti SR, Subrahmanyam D, Sarla N, Prasanth VV et al. (2014). Prediction and expression analysis of miRNAs associated with heat stress in Oryza sativa. Rice Science 21: 3-12. doi: 10.1016/S1672-6308(13)60164-X
  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M et al. (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A involved in drought-responsive gene expression. Plant Cell 18: 1292-1309. doi: 10.1105/tpc.105.035881
  • Sambrook J, Russell DW (2001). Working with synthetic oligonucleotide probes. In Molecular cloning: a laboratory manual. 3 ed. New York: Cold Spring Harbor Laboratory; 10: 1–10.52.
  • Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016). MicroRNAs as potential targets for abiotic stress tolerance in plants. Frontiers in Plant Science 7: 817. doi: 10.3389/ fpls.2016.00817
  • Sievers F, Higgins DG (2018). Clustal Omega for making accurate alignments of many protein sequences. Protein Science 27: 135-145. doi: 10.1002/pro.3290
  • Slater JW (1968). The effect of night temperature on tuber initiation of the potato. European Potato Journal 11: 14–22. doi: 10.1007/ BF02365158
  • Smirnoff N, Cumbes QJ (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28: 1057-1060. doi: 10.1016/0031-9422(89)80182-7
  • Sobahan MA, Akter N, Murata Y, Munemasa S (2016). Exogenous proline and glycinebetaine mitigate the detrimental effect of salt stress on rice plants. South Edward High School 38-43. doi: 10.14456/sustj.2016.11
  • Sreenivasulu N, Sopory SK, Kishor PK (2007). Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388: 1-13. doi 10.1016/j. gene.2006.10.009
  • Stark JC, Love SL, King BA, Marshall JM, Bohl WH et al. (2013). Potato cultivar response to seasonal drought patterns. American Journal of Potato Research 90: 207–216. doi: 10.1007/s12230-012-9285-9
  • Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR et al. (2014). Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26: 1792–1807. doi: 10.1105/tpc.114.123851
  • Szabados L, Savoure A (2010). Proline: a multifunctional amino acid. Trends in Plant Science 15: 89-97. doi: 10.1016/j. tplants.2009.11.009
  • Tahmasebi S, Heidari B, Pakniyat H, Jalal Kamali MR (2014). Independent and combined effects of heat and drought stress in the Seri M82× Babax bread wheat population. Plant Breeding 133: 702-711. doi: 10.1111/pbr.12214
  • Voesenek LA, Pierik R (2008). Plant stress profiles. Science 320: 880- 881. doi: 10.1126/science.1158720 Voinnet O (2009). Origin, biogenesis, and activity of plant microRNAs. Cell 136: 669-687. doi: 10.1016/j.cell.2009.01.046
  • Wu G, Park MY, Conway SR, Wang JW, Weigel D et al. (2009). The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138: 750-759. doi: 10.1016/j.cell.2009.06.031
  • Xin M, Wang Y, Yao Y, Xie C, Peng H et al. (2010). Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biology 10: 1-11. doi: 10.1186/1471-2229-10-123
  • Yin F, Gao J, Liu M, Qin C, Zhang W et al. (2014). Genome-wide analysis of water-stress-responsive microRNA expression profile in tobacco roots. Functional and Integrative Genomics 14: 319-332. doi: 10.1007/s10142-014-0365-4
  • Zhang B (2015). MicroRNA: a new target for improving plant tolerance to abiotic stress. Journal of Experimental Botany 66: 1749-1761. doi: 10.1093/jxb/erv013
  • Zhang B, Unver T (2018). A critical and speculative review on microRNA technology in crop improvement: Current challenges and future directions. Plant Science 274: 193-200. doi: 10.1016/j.plantsci.2018.05.031
  • Zhao XX, Huang LK, Zhang XQ, Li Z, Peng Y (2014). Effects of heat acclimation on photosynthesis, antioxidant enzyme activities, and gene expression in orchard grass under heat stress. Molecules 19: 13564-13576. doi: 10.3390/ molecules190913564
  • Zhao J, He Q, Chen G, Wang L, Jin B (2016). Regulation of noncoding RNAs in heat stress responses of plants. Frontiers in Plant Science 7: 1213. doi: 10.3389/fpls.2016.01213
  • Zhao G, Yu H, Liu M, Lu Y, Ouyang B (2017). Identification of saltstress responsive microRNAs from Solanum lycopersicum and Solanum pimpinellifolium. Plant Growth Regulators 83: 129- 140. doi: 10.1007/s10725-017-0289-9
  • Zhou X, Wang G, Zhang W (2007). UV-B responsive microRNA genes in Arabidopsis thaliana. Molecular Systems Biology 3: 103. doi: 10.1038/msb4100143
  • Zhou L, Liu Y, Liu Z, Kong D, Duan M et al. (2010). Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. Journal of Experimental Botany 61: 4157- 4168. doi: 10.1093/jxb/erq237
  • Zhu QH, Upadhyaya NM, Gubler F, Helliwell CA (2009). Overexpression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biology 9: 149. doi: 10.1186/1471-2229-9-149
  • Zhu QH, Helliwell CA (2011). Regulation of flowering time and floral patterning by miR172. Journal of Experimental Botany 62: 487-495. doi: 10.1093/jxb/erq295
  • Zou Y, Wang Y, Wang L, Yang L, Wang R et al. (2013). miR172b controls the transition to autotrophic development inhibited by ABA in Arabidopsis. PloS One 8: e64770. doi: 10.1371/ journal.pone.0064770
  • Zou Y, Wang S, Zhou Y, Bai J, Huang G et al. (2018). Transcriptional regulation of the immune receptor FLS2 controls the ontogeny of plant innate immunity. Plant Cell 30: 2779-2794. doi: 10.1105/tpc.18.00297
Turkish Journal of Agriculture and Forestry-Cover
  • ISSN: 1300-011X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

QTL mapping of seedling root traits in Synthetic W7984 × Opata M85 bread wheat (Triticum aestivum L.) mapping population

Harun BEKTAŞ

Acceleration of growth in tomato seedlings grown with growth retardant

Atnan UĞUR, Ufuk UÇAN

The effect of different drying methods on nutritional composition and antioxidant activity of purslane (Portulaca oleracea)

Eyad AOUDEH, İhsan Güngör ŞAT, Halil İbrahim BİNİCİ

Nutritional and biologically active compounds in Russian (VIR) Brassicaceae vegetable crops collection

Alla Evgenievna SOLOVYEVA, Tatyana Vasilevna SHELENGA, Alexey Vasilievich KONAREV, Anastasia Borisovna KURINA, Dmitry Lvovich KORNYUKHIN, Dmitry Andreevich FATEEV, Anna Mayevna ARTEMYEVA

Effects of biological metabolism of Metasequoia glyptostroboides on nutrient element content and enzyme activity in seedling soil

Cuiyue DONG

Influence of different drying methods and cold storage treatments on the postharvest quality and nutritional properties of P. ostreatus mushroom

Beyhan KİBAR

Seed oil content and fatty acid profiles of endemic Phoenix theophrasti Greuter, Phoenix roebelenii O’Brien, Phoenix caneriensis Hort. Ex Chabaud, and Phoenix dactylifera L. grown in the same locality in Turkey

Zeynep ERGÜN

Effects of growing site parameters on vessel elements of Quercus ilex through Turkey and evaluating in respect of forestry

Ünal AKKEMİK, Orhan SEVGİ, Osman Yalçın YILMAZ, Sena GENÇ, Erşan SELVİ, Hatice YILMAZ, Ece SEVGİ, Ferdi AKARSU

Multivariate analysis of mutant wheat (Triticum aestivum L.) lines under drought stress

Sadaf ZAHRA, Tayyaba SHAHEEN, Momina HUSSAIN, Sana ZULFIQAR, Mehboob-ur-RAHMAN

Comparison of methods used in predicting irrigation performance indicators

Sinan KARTAL, Fırat ARSLAN