Genome-wide identification and molecular characterization of Citrus unshiu WRKY transcription factors in Satsuma mandarin: clues for putative involvement in cell growth, fruit ripening, and stress response

Genome-wide identification and molecular characterization of Citrus unshiu WRKY transcription factors in Satsuma mandarin: clues for putative involvement in cell growth, fruit ripening, and stress response

WRKY transcription factors, being involved in several biological roles, stimulus signaling, and stress response, could beinteresting candidates to prospect, particularly in the Citrus unshiu (Satsuma mandarin) genome. Our approach, mainly based oncomputational analyses, led to the identification of 51 CiuWRKYs followed by their molecular characterization. Syntenic relationshipanalysis showed significant bias towards sweet orange and Arabidopsis chromosomes. Analyses of promoter region showed thatCiuWRKY1 modulates gene transcription through W-box site targeting. The deduced CiuWRKY1 protein was moderately hydrophobic.A comparative in silico analysis among Arabidopsis thaliana and Citrus sinensis WRKYs allowed us to designate orthologous genes.Lacking available CiuWRKY1 expression data, the expression patterns of these orthologous genes indicated that CiuWRKY1 transcriptionwould be modulated by various environmental and biotic constraints and growth regulator stimuli. Our results suggested that thecharacterization of the CiuWRKY genes in C. unshiu provides new information that can help characterize the molecular mechanismsunderlying stress responses and cellular growth, and that CiuWRKY1 would be an interesting candidate to use in Citrus breedingtechnologies.

___

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-402.
  • Alvarez-Gerding X, Espinoza C, Inostroza-Blancheteau C, ArceJohnson P (2015). Molecular and physiological changes in response to salt stress in Citrus macrophylla W plants overexpressing Arabidopsis CBF3/DREB1A. Plant Physiol Biochem 92: 71-80.
  • Ayadi M, Hanana M, Kharrat N, Merchaoui H, Marzoug RB, Lauvergeat V, Rebaï A, Mzid R (2016). The WRKY transcription factor family in citrus: valuable and useful candidate genes for citrus breeding. Appl Biochem Biotechnol 180: 516-543.
  • Baranwal VK, Negi N, Khurana P (2016). Genome-wide identification and structural, functional and evolutionary analysis of WRKY components of mulberry. Sci Rep 6: 30794.
  • Ben Hayyim G, Moore GA (2007). Recent advances in breeding citrus for drought and saline stress tolerance. In: Jenks MA, Hasegawa PM, Jain SM, editors. Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Berlin, Germany: Springer, pp. 627-642.
  • Blom N, Gammeltoft S, Brunak S (1999). Sequence and structurebased prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294: 1351-1362.
  • Callebaut I, Labesse G, Durand P, Poupon A, Canard L, Chomilier J, Henrissat B, Mornon JP (1997). Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. Cell Mol Life Sci 53: 621-645.
  • Çevik MS, Moore GA (2013). Identification of a drought- and coldstress inducible WRKY gene in the cold-hardy Citrus relative Poncirus trifoliate. J N Z J Crop Hortic Sci 41: 57-68.
  • Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X (2010). Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biology 10: 281.
  • Creelman RA, Mulpuri R (2002). The oxylipin pathway in Arabidopsis. Arabidopsis Book 1: e0012.
  • Da Silva EG, Ito TM, de Souza SGH (2017). In silico genomewide identification and phylogenetic analysis of the WRKY transcription factor family in sweet orange (Citrus sinensis). Aus J Crop Sci 11: 716-726.
  • DeLano WL (2002). The PyMOL Molecular Graphics System. San Carlos, CA, USA: DeLano Scientific. Dias LP, de Oliveira-Busatto LA, Bodanese-Zanettini MH (2016).
  • The differential expression of soybean [Glycine max (L.) Merrill] WRKY genes in response to water deficit. Plant Physiol Biochem 107: 288-300.
  • Ding M, Chen J, Jiang Y, Lin L, Cao Y, Wang M, Zhang Y, Rong J, Ye W (2015). Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium. Mol Genet Genomics 290: 151-171.
  • Dong JX, Chen CH, Chen ZX (2003). Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51: 21-37.
  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010). MYB transcription factors in Arabidopsis. Trends Plant Sci 15: 573-581.
  • Endo T, Fujii H, Sugiyama A, Nakano M, Nakajima N, Ikoma Y, Omura M, Shimada T (2016). Overexpression of a citrus basic helix-loop-helix transcription factor (CubHLH1), which is homologous to Arabidopsis activation-tagged bri1 suppressor 1 interacting factor genes, modulates carotenoid metabolism in transgenic tomato. Plant Sci 243: 35-48.
  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci 5: 199-206.
  • Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C et al. (2013). STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41: 808- 15.
  • Fujii H, Ohta S, Nonaka K, Katayose Y, Matsumoto T, Endo T, Yoshioka T, Omura M, Shimada T (2016). Parental diagnosis of satsuma mandarin (Citrus unshiu Marc.) revealed by nuclear and cytoplasmic markers. Breeding Sci 66: 683-691.
  • Gachomo EW, Jimenez-Lopez JC, Baptiste LJ, Kotchoni SO (2014).
  • GIGANTUS1 (GTS1), a member of Transducin/WD40 protein superfamily, controls seed germination, growth and biomass accumulation through ribosome-biogenesis protein interactions in Arabidopsis thaliana. BMC Plant Biology 14: 37.
  • Gao QM, Venugopal S, Navarre D, Kachroo A (2011). Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiol 155: 464-476.
  • García-Luís A, Kanduser M, Santamarina P, Guardiola JL (1992). Low temperature influence on flowering in citrus. The separation of inductive and bud dormancy releasing effects. Physiol Plant 86: 648–652.
  • Golldack D, Lueking I, Yang O (2011). Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30: 1383-1391.
  • Gong X, Zhang J, Hu J, Wang W, Wu H, Zhang Q, Liu JH (2015).
  • FcWRKY70, a WRKY protein of Fortunella crassifolia, functions in drought tolerance and modulates putrescine synthesis by regulating arginine decarboxylase gene. Plant Cell Environ 38: 2248-2262.
  • Guermeur Y, Geourjon C, Gallinari P, Deleage G (1999). Improved performance in protein secondary structure prediction by inhomogeneous score combination. Bioinformatics 15: 413- 421.
  • Guex N, Peitsch MC (1997). SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18: 2714-2723.
  • Guo D, Qin G (2016). EXB1/WRKY71 transcription factor regulates both shoot branching and responses to abiotic stresses. Plant Signal Behav 11: e1150404.
  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999). Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27: 297-300.
  • Holub EB (2001). The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet 2: 516-527.
  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008). Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008: 420747.
  • Hsieh TH, Li CW, Su RC, Cheng CP, Sanjaya Tsai YC, Chan MT (2010). A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231: 1459-1473.
  • Jiang Y, Deyholos MK (2006). Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biology 6: 25. Jiang Y, Liang G, Yu D (2012). Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant 5: 1375- 1388.
  • Jiao Z, Sun J, Wang C, Dong Y, Xiao S, Gao X, Cao Q, Li L, Li W, Gao C (2018). Genome-wide characterization, evolutionary analysis of WRKY genes in Cucurbitaceae species and assessment of its roles in resisting to powdery mildew disease. PLoS One 13: e0199851.
  • Jin JP, Tian F, Yang DC, Meng YQ, Kong L, Luo JC, Gao G (2017). PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45: 1040-1045.
  • Kita M, Endo-Inagaki T, Moriguchi T, Omura M (2000). cDNA catalogs expressed in albedo of citrus fruit: a comparative analysis of cDNA libraries from pulp and albedo of Satsuma mandarin (Citrus unshiu Marc.). Acta Hortic 521: 179-183.
  • Kumar S, Stecher G, Tamura K (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 1870-1874
  • Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R, Horsman D, Jones S, Marra MA (2009). Circos: an information aesthetic for comparative genomics. Genome Res 19: 1639-1645.
  • Lee TH, Tang HB, Wang XY, Paterson AH (2013). PGDD: A database of gene and genome duplication in plants. Nucleic Acids Res 41: 1152-1158.
  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002). Plant CARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30: 325-327.
  • Li D, Liu P, Yu J, Wang L, Dossa K, Zhang Y, Zhou R, Wei X, Zhang X (2017). Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses. BMC Plant Biology 17: 152.
  • Li HL, Guo D, Yang ZP, Tang X, Peng SQ (2014). Genome-wide identification and characterization of WRKY gene family in Hevea brasiliensis. Genomics 104: 14-23.
  • Li MY, Xu ZS, Tian C, Huang Y, Wang F, Xionga AS (2016). Genomic identification of WRKY transcription factors in carrot (Daucus carota) and analysis of evolution and homologous groups for plants. Sci Rep 6: 23101.
  • Li W, Wang H, Yu D (2016). The Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions. Mol Plant 9: 1492-1503.
  • Li YM, Zhu L, Zhu HY, Song PY, Guo LQ, Yang LM (2018). Genomewide analysis of the WRKY family genes and their responses to cold stress in watermelon. Czech J Genet Plant Breed 1: 9.
  • Lindemose S, O’Shea C, Jensen MK, Skriver K (2013). Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 14: 5842-78.
  • Ling J, Jiang W, Zhang Y, Yu H, Mao Z, Gu X, Huang S, Xie B (2011). Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics 12: 471.
  • Liu X, Song Y, Xing F, Wang N, Wen F, Zhu C (2016). GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma 253: 1265-1281.
  • Lyst MJ, Stancheva I (2007). A role for SUMO modification in transcriptional repression and activation. Biochem Soc Trans 35: 1389-1392.
  • Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011). Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23: 1639-1653.
  • Miao Y, Smykowski A, Zentgraf U (2008). A novel upstream regulator of WRKY53 transcription during leaf senescence in Arabidopsis thaliana. Plant Biol 10: 110-120.
  • Nei M, Kumar S (2000). Molecular Evolution and Phylogenetics. Oxford, UK: Oxford University Press.
  • Nishiuchi T, Shinshi H, Suzuki K (2004). Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression. J Biol Chem 279: 55355-55361.
  • Noguero M, Atif RM, Ochatt S, Thompson RD (2013). The role of the DNA-binding one zinc finger (DOF) transcription factor family in plants. Plant Sci 209: 32-45.
  • Nuruzzaman M, Sharoni AM, Satoh K, Kumar A, Leung H, Kikuchi S (2014). Comparative transcriptome profiles of the WRKY gene family under control, hormone-treated, and drought conditions in near-isogenic rice lines reveal differential, tissue specific gene activation. J Plant Physiol 171: 2-13.
  • Omura M, Shimada T (2016). Citrus breeding, genetics and genomics in Japan. Breed Sci 66: 3-17.
  • Prelić A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, Gruissem W, Hennig L, Thiele L, Zitzler E (2006). A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22: 1122-1129.
  • Raineri J, Hartman MD, Chan RL, Iglesias AA, Ribichich KF (2016). A sunflower WRKY transcription factor stimulates the mobilization of seed-stored reserves during germination and post-germination growth. Plant Cell Rep 35: 1875-1890.
  • Ross CA, Liu Y, Shen QJ (2007). The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol 49: 827-842.
  • Saitou N, Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425.
  • Shang Y, Yan L, Liu ZQ, Cao Z, Mei C, Xin Q, Wu FQ, Wang XF, Du SY (2010). The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22: 1909-1935.
  • Shi X, Bi J, Toscano N, Cooksey D (2008). The virulence mechanisms of Xylella fastidiosa in xylem fluid of citrus and grapevines. Phytopathology 98: S144-S145.
  • Shimada T, Kita M, Endo T, Fujii H, Ueda T, Moriguchi T, Omura M (2003). Expressed sequence tags of ovary tissue cDNA library in Citrus unshiu Marc. Plant Sci 165: 167-168.
  • Shimizu T, Tanizawa Y, Mochizuki T, Nagasaki H, Yoshioka T, Toyoda A, Fujiyama A, Kaminuma E, Nakamura Y (2017). Draft sequencing of the heterozygous diploid genome of Satsuma (Citrus unshiu Marc.) using a hybrid assembly approach. Front Genet 8: 180.
  • Siboza XI, Bertling I, Odindo AO (2014). Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon). J Plant Physiol 171: 1722-1731.
  • Simonini S, Kater MM (2014). Class I BASIC PENTACYSTEINE factors regulate HOMEOBOX genes involved in meristem size maintenance. J Exp Bot 65: 1455-1465.
  • Simonini S, Roig-Villanova I, Gregis V, Colombo B, Colombo L, Kater MM (2012). Basic pentacysteine proteins mediate MADS domain complex binding to the DNA for tissue-specific expression of target genes in Arabidopsis. Plant Cell 24: 4163- 4172.
  • Slawson C, Housley MP, Hart GW (2006). O-GlcNAc cycling: How a single sugar post-translational modification is changing the way we think about signaling networks. J Cell Biochem 97: 71- 83.
  • Sun CX, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003). A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15: 2076-2092.
  • Talon M, Gmitter FG (2008). Citrus genomics. Int J Plant Genomics 2008: 528361. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013).
  • MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725-2729.
  • Terol J, Conesa A, Colmenero JM, Cercos M, Tadeo F, Agustí J, Alós E, Andres F, Soler G (2007). Analysis of 13000 unique Citrus clusters associated with fruit quality, production and salinity tolerance. BMC Genomics 8: 31.
  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876-4882.
  • Timothy LB, Elkan C (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology. Menlo Park, CA, USA: AAAI Press, pp. 28-36.
  • Turck F, Zhou A, Somssich IE (2004). Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to its native promoter and the defense-related gene PcPR1-1 in parsley. Plant Cell 16: 2573-2585.
  • Wang L, Zhu W, Fang L, Sun X, Su L, Liang Z, Wang N, Londo J, Li S (2014). Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. BMC Plant Biology 14: 103.
  • Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, Perrier X, Ruiz M, Scalabrin S, Terol J et al. (2014). Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol 32: 656-662.
  • Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D, Shen QJ (2005). Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137: 176-189.
  • Xing DH, Lai ZB, Zheng ZY, Vinod KM, Fan BF, Chen ZX (2008). Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Mol Plant 1: 459-470.
  • Xu H, Watanabe KA, Zhang L, Shen QJ (2016). WRKY transcription factor genes in wild rice Oryza nivara. DNA Res 23: 311-323.
  • Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao WB, Hao BH, Lyon MP et al. (2013). The draft genome of sweet orange (Citrus sinensis). Nat Genet 45: 59-66.
  • Yamamoto S, Nakano T, Suzuki K, Shinshi H (2004). Elicitor-induced activation of transcription via W box-related cis-acting elements from a basic chitinase gene by WRKY transcription factors in tobacco. Biochim Biophys Acta 1679: 279-287.
  • Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki I, Matsuda T (2005). Solution structure of an arabidopsis WRKY DNA binding domain. Plant Cell 17: 944-956.
  • Yao H, Guo L, Fu Y, Borsuk LA, Wen TJ, Skibbe DS, Cui X, Scheffler BE, Cao J, Emrich SJ et al. (2005). Evaluation of five ab initio gene prediction programs for the discovery of maize genes. Plant Mol Biol 57: 445-60.
  • Yu DQ, Chen CH, Chen ZX (2001). Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene express ion. Plant Cell 13: 1527-1539.
  • Zhang YJ, Wang LJ (2005). The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5: 1.
  • Zhang ZL, Xie Z, Zou XL, Casaretto J, Ho THD, Shen QXJ (2004). A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134: 1500-1513.
  • Zheng L, Liu G, Meng X, Liu Y, Ji X, Li Y, Nie X, Wang Y (2013).
  • A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes. Plant Mol Biol 82: 303-320.
  • Zheng Z, Abu Qamar S, Chen Z, Mengiste T (2006). Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48: 592-605. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004). GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136: 2621-2632.
  • Zou C, Jiang W, Yu D (2010). Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. J Exp Bot 61: 3901-3914.