Functional fingerprinting estimates renewal opportunities for tree species in a mixed Turkey oak forest

Functional fingerprinting estimates renewal opportunities for tree species in a mixed Turkey oak forest

Maintaining and managing trees with different ecological plasticity under climate conditions aggravated by short-termvariability are major challenges for foresters. Our aims were to investigate species-specific ecophysiological responses of canopy treesin a mixed Turkey oak forest during their early-phase regeneration. We measured plant carbon and water exchange with portableIRGA equipment under natural field conditions (canopy gap) and in a climate-controlled (standardized) environment. We analyzedvariability and differences in plant gas exchange in relation to important abiotic site parameters and the species. Assimilation, stomatalconductance, and intrinsic water use were applied as calibrating parameters for plant functional fingerprinting to detect carbon-towater response performance of the saplings. The most favorable water economy during summer and seasonal maximum in carbonuptake during fall evolved as common response characteristics of the species in canopy gaps. Sessile oak (Quercus petraea) was foundto be a water-regulated species due to the highest relative ratio of intrinsic water-use efficiency. In contrast, Turkey oak (Q. cerris) andmanna ash (Fraxinus ornus) were identified as carbon-driven species presenting a gradual increase in assimilation during their seasonaldynamics. Consequently, we can predict a delayed regeneration of sessile oak and progressive growth of manna ash and Turkey oak in therenewing canopy compared to the initial forest stand. European hornbeam (Carpinus betulus) and wild service tree (Sorbus torminalis)certainly remain as accessory elements due to their unfavorable carbon input ratio and poor water use economy. Explored knowledge oncarbon-to-water response behavior of these forest-forming trees can provide a novel contribution to afforestation practices in adaptiveforest management.

___

  • Bednorz L, Nowinska R (2018). Analysis of growth of recruits of natural regeneration of Sorbus torminalis (L.) Crantz - a rare European forest tree species. iForest – Biogeosciences and Forestry 11 (1): 72-78. doi: 10.3832/ifor2347-010
  • Bobiec A, Reif A, Öllerer K (2018). Seeing the oakscape beyond the forest: a landscape approach to the oak regeneration in Europe. Landscape Ecology 33: 513-528. doi: 10.1007/s10980-018- 0619-y
  • Boratyński A (1996). Carpinus betulus. In: Roloff A, Weisgerber H, Lang UM, Stimm B, Schütt P (editors). Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie III/2. Weinheim, Germany: Wiley-Vch Verlag, pp. 1-12.
  • Březina I, Dobrovolný L (2011). Natural regeneration of sessile oak under different light conditions. Journal of Forest Science 57 (8): 359-368. doi: 10.17221/12/2011-JFS
  • Bréda N, Cochard H, Dreyer E, Granier A (1993). Field comparison of transpiration, stomatal conductance and vulnerability to cavitation of Quercus petraea and Quercus robur under water stress. Annals of Forest Science 50 (6): 571-582. doi: 10.1051/ forest:19930606
  • Caudullo G, De Rigo D (2016). Fraxinus ornus in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, De Rigo D, Caudullo G, Houston-Durrant T, Mauri A (editors). European Atlas of Forest Tree Species. Luxembourg, LX: Publication Office of European Union, pp. 100-101.
  • Danielewicz W, Kiciński P, Wiatrowska B (2016). Symptoms of the naturalisation of the Turkey oak (Quercus cerris L.) in Polish forests. Folia Forestalia Polonica Series A - Forestry 58 (3): 147- 162. doi: 10.1515/ffp-2016-0017
  • Deligöz A, Bayar E (2018). Drought stress responses of seedlings of two oak species (Quercus cerris and Quercus robur). Turkish Journal of Agriculture and Forestry 42 (2): 114-123. doi: 10.3906/tar-1709-29
  • Di Filippo A, Alessandrini A, Biondi F, Blasi S, Portoghesi L et al. (2010). Climate change and oak growth decline: dendroecology and stand productivity of a Turkey oak (Quercus cerris L.) old stored coppice in Central Italy. Annals of Forest Science 67 (706): 1-14. doi: 10.1051/forest/2010031
  • Duda M, Całka A (2013). Inventory of wild service tree, Sorbus torminalis (L.) Crantz, in the Taczanów Forest Inspectorate. Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria 12 (2): 5-12.
  • Ďurkovič J, Čaňová I, Kardošová M, Kurjak D (2013). Seasonal patterns of leaf photosynthetic and secondary xylem vascular traits in current-year stems of three Sorbus species with contrasting growth habits. Plant Biology 16 (5): 908-916. doi: 10.1111/plb.12150
  • Elek Z, Kovács B, Aszalós R, Boros G, Samu F et al. (2018). Taxonspecific responses to different forestry treatments in a temperate forest. Scientific Reports 8 (16990): 1-10. doi.org/10.1038/ s41598-018-35159-z
  • Epron D, Dreyer E (1993). Long-term effects of drought on photosynthesis of adult oak trees (Quercus petraea (Matt.) Liebl. and Quercus robur L.) in a natural stand. New Phytologist 125 (2): 381-389. doi: 10.1111/j.1469-8137.1993.tb03890.x
  • Field CB, Ball JT, Berry JA (1991). Photosynthesis: principles and field techniques. In: Ehleringer J, Mooney HA, Rundel PW, Pearcy RW (editors). Plant Physiological Ecology - Field Methods and Instrumentation. London, United Kingdom: Chapman and Hall, pp. 209-253.
  • Gortan E, Nardini A, Gascó A, Salleo S (2009). The hydraulic conductance of Fraxinus ornus leaves is constrained by soil water availability and coordinated with gas exchange rates. Tree Physiology 29 (4): 529-539. doi: 10.1093/treephys/tpn053
  • Götmark F, Kiffer C (2014). Regeneration of oaks (Quercus robur/Q. petraea) and three other tree species during long-term succession after catastrophic disturbance (windthrow). Plant Ecology 215 (9): 1067-1080. doi: 10.1007/s11258-014-0365-4
  • Hemery GE, Clark JR, Aldinger E, Claessens H, Malvolti ME et al. (2010). Growing scattered broadleaved tree species in Europe in a changing climate: a review of risks and opportunities. Forestry 83 (1): 65-81. doi: 10.1093/forestry/cpp034
  • Kalapos T, Csontos P (2003). Variation in leaf structure and function of the Mediterranean tree Fraxinus ornus L. growing in ecologically contrasting habitats at the margin of its range. Plant Biosystems 137 (1): 73-82. doi: 10.1080/11263500312331351351
  • Kevey B (2008). Magyarország erdőtársulásai. In: Bartha D (editor). Tilia XIV. Sopron, Hungary: LővérPrint, pp. 342-351 (in Hungarian with English summary).
  • Kiorapostolou N, Petit G (2018). Similarities and differences in the balances between leaf, xylem and phloem structures in Fraxinus ornus along an environmental gradient. Tree Physiology 39 (2): 234-242. doi: 10.1093/treephys/tpy095
  • Kollár T (2017). Light conditions, soil moisture, and vegetation cover in artificial forest gaps in estern Hungary. Acta Silvatica et Lignaria Hungarica 13 (1): 25-40. doi: 10.1515/aslh-2017-0002
  • Löf M, Ammer C, Coll L, Drössler L, Huth F et al. (2018). Regeneration Patterns in Mixed-Species Stands. In: Bravo-Oviedo A, Pretzsch H, Del Rio M (editors). Dynamics, Silviculture and Management of Mixed Forests. Cham, Switzerland: Springer Verlag, pp. 103-130.
  • Maděra P, Kohoutek M, Šenfeldr M, Řepka R (2012). The population structure and regeneration of Sorbus torminalis in Hádecká planinka National Nature Reserve (Czech Republic). Dendrobiology 68: 63-68.
  • Maděra P, Tichá S, Řepka R (2013). Distribution and ecological requirements of Sorbus torminalis (L.) Crantz in the Czech Republic. Dendrobiology 69: 59-68. doi: 10.12657/ denbio.069.007
  • Martínez-Vilalta J, Prat E, Oliveras I, Piñol J (2002). Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 133 (1): 19-29. doi: 10.1007/s00442-002- 1009-2
  • Muscolo A, Bagnato S, Sidari M, Mercurio R (2014). A review of the roles of forest canopy gaps. Journal of Forestry Research 25 (4): 725-736. doi: 10.1007/s11676-014-0521-7
  • Nicolescu VN, Hochbichler E, Coello Gomez J, Ravagni S, Giulietti V (2009). Ecology and silviculture of wild service tree (Sorbus torminalis (L.) Crantz): a literature review. Die Bodenkultur 60 (3): 35-44.
  • Pach M, Sansone D, Ponette Q, Barreiro S, Mason B et al. (2018). Silviculture of Mixed Forests: A European Overview of Current Practices and Challenges. In: Bravo-Oviedo A, Pretzsch H, Del Rio M (editors). Dynamics, Silviculture and Management of Mixed Forests. Cham, Switzerland: Springer Verlag, pp. 185- 253.
  • Petit G, Savi T, Consolini M, Anfodillo T, Nardini A (2016). Interplay of growth rate and xylem plasticity for optimal coordination of carbon and hydraulic economies in Fraxinus ornus trees. Tree Physiology 36 (11): 1310-1319. doi: 10.1093/treephys/tpw069
  • Purina L, Matisons R, Katrevics J, Jansons A (2015). Regeneration and sapling growth of European hornbeam at its northern limit in Latvia. In: Treija S, Skujeniece S (editors). Proceedings of the 21st International Scientific Conference on Research for Rural Development; Jelgava, Latvia. pp. 29-36.
  • Pyttel P, Kunz J, Bauhus J (2013). Growth, regeneration and shade tolerance of the Wild Service Tree (Sorbus torminalis (L.) Crantz) in aged oak coppice forests. Trees 27 (6): 1609-1619. doi: 10.1007/s00468-013-0908-7
  • Rasmussen KK (2007). Dendroecological analysis of a rare subcanopy tree: effects of climate, latitude, habitat conditions and forest history. Dendrochronologia 25 (1): 3-17. doi: 10.1016/j. dendro.2007.01.002
  • Salamon-Albert É, Csiszár Á, Bartha D (2018). Site conditions and functional traits affect regeneration dynamics of European hornbeam (Carpinus betulus L.) in forest canopy gaps. Turkish Journal of Botany 42 (6): 701-709. doi: 10.3906/bot-1806-44
  • Saniga M, Balanda M, Kucbel S, Pittner J (2014). Four decades of forest succession in the oak-dominated forest reserves in Slovakia. iForest – Biogeosciences and Forestry 7 (5): 324-332. doi: 10.3832/ifor0996-007
  • Schüte G (2001). Jugendwachstum und Schattentoleranz vegetativer Verjüngungen der Elsbeere (Sorbus torminalis Crantz). Forst und Holz 56: 11-15 (in German).
  • Sebastiano S, Guglielmo MF, Marcello M, Veca LM, Salvatore D (2017). Resilience of Mediterranean Forests to Climate Change. In: Fuerst-Bjeliš B (editor). Mediterranean Identities - Environment, Society, Culture. London, United Kingdom: InTech Open, pp. 263-282.
  • Sikkema R, Caudullo G, De Rigo D (2016). Carpinus betulus in Europe: distribution, habitat, usage and threats. In: SanMiguel-Ayanz J, De Rigo D, Caudullo G, Houston Durrant T, Mauri A (editors). European Atlas of Forest Tree Species. Luxembourg, Luxembourg: Publication Office of the European Union, pp. 74-75.
  • Taylor SO, Lorimer CG (2003). Loss of oak dominance in dry-mesic deciduous forests predicted by gap capture methods. Plant Ecology 167 (1): 71-88. doi: 10.1023/A:1023975026261
  • Thomas PA (2017). Biological Flora of the British Isles: Sorbus torminalis. Journal of Ecology 105 (6): 1806-1831. doi: 10.1111/1365-2745.12857
  • Tinya F, Kovács B, Aszalós R, Tóth B, Csépányi P et al. (2020). Initial regeneration success of tree species after different forestry treatments in a sessile oak-hornbeam forest. Forest Ecology and Management 459 (117810): 1-12. doi: 10.1016/j. foreco.2019.117810
  • Tognetti R, Cherubini P, Marchi S, Raschi A (2007). Leaf traits and tree rings suggest different water-use and carbon assimilation strategies by two co-occurring Quercus species in a Mediterranean mixed-forest stand in Tuscany, Italy. Tree Physiology 27 (12): 1741-1751. doi: 10.1093/ treephys/27.12.1741
  • Valentini R, Epron D, De Angelis P, Matteucci G, Dreyer E (1995). In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant, Cell & Environment 18 (6): 631-640. doi: 10.1111/j.1365- 3040.1995.tb00564.x
  • Welk E, De Rigo D, Caudullo G (2016). Sorbus torminalis in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, De Rigo D, Caudullo G, Houston-Durrant T, Mauri A (editors). European Atlas of Forest Tree Species. Luxembourg, Luxembourg: Publication Office of European Union, pp. 180- 181.
  • Zhu J, Lu D, Zhang W (2014). Effects of gaps on regeneration of woody plants: a meta-analysis. Journal of Forestry Research 25 (3): 501-510. doi: 10.1007/s11676-014-0489-3