Correspondence between maturity date and molecular variations in a NAC transcription factor of diploid and polyploid Prunus species

Öz The maturity date (MD) of Prunus stone fruit has been long known to be a quantitatively inherited trait. A NAC-type gene indicated as PpNAC1 (ppa008301m) has been found recently to be a strong candidate of a major gene influencing MD in peach. A 9-bp insertion in this gene resulted in earlier MD in two segregating peach populations. This study was carried out to test whether this mutation in the PpNAC1 gene can be used as a reliable functional marker for MD in a wide range of peach cultivars of various origins and phenotypic characters. A total of 125 peach cultivars were examined using a 3 × 3 custom chi-square contingency table according to their NAC genotype and MD (early, midseason, and late). Cramér's V equaled 0.478 and the Goodman-Kruskal index (l) was 0.37, indicating an extremely strong correlation between MD and NAC genotype. In addition, we determined 15 sequences from 10 cultivars of five Prunus species including peach, almond, apricot, sour cherry, and European plum with E-values ranging from 9e-88 to 2e-74, supporting their homology to PpNAC1. A total of 69 single nucleotide polymorphisms and two insertion/deletions were detected in the coding region of the partial NAC domain sequences with three mutations putatively inducing nonconservative amino acid replacements and a nonsense mutation in specific alleles of early ripening apricot and sour cherry cultivars. The results are discussed with focus on the putative molecular mechanisms of mutations in the NAC genes, crop evolutionary perspectives, and the opportunities for designing cost-efficient markers to predict MD in Prunus breeding programs.

___

Aida M, Ishida T, Tasaka M (1999). Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126: 1563-1570.

Akagi T, Hanad, T, Yaegaki H, Gradzie, TM, Tao R (2016). Genome- wide view of genetic diversity reveals paths of selection and cultivar differentiation in peach domestication. DNA Res 23: 271-282.

Baker VS, Imade GE, Molta NB, Tawde P, Pam SD, Obadofin MO, Sagay SA, Egah DZ, Iya D, Afolabi BB et al. (2008). Cytokine- associated neutrophil extracellular traps and antinuclear antibodies in Plasmodium falciparum infected children under six years of age. Malaria J 7: 1.

Bianchi VJ, Rubio M, Trainotti L, Verde I, Bonghi C, Martínez-Gómez P (2015). Prunus transcription factors: breeding perspectives. Front Plant Sci 6: 443.

Cramér H (1946). Mathematical Methods of Statistics. Princeton, NJ, USA: Princeton University Press. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999). Mapping QTLs controlling fruit quality in peach ( Prunus persica (L.) Batsch). Theor Appl Genet 98: 18-31.

Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S et al. (2012). Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109: 280-292.

Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, Tartarini S, Bassi D, Testolin R (2007). Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus map. Tree Genet Genomes 3: 239-249.

Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011). QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7: 323-335.

Eduardo I, Picañol R, Rojas E, Batlle I, Howad W, Aranzana MJ, Arús P (2015). Mapping of a major gene for the slow ripening character in peach: co-location with the maturity date gene and development of a candidate gene-based diagnostic marker for its selection. Euphytica 205: 627-636.

Giovannoni JJ (2004). Genetic regulation of fruit development and ripening. Plant Cell 16: S170-S180.

Halász J, Hegedűs A, Hermán R, Stefanovits-Bányai É, Pedryc A (2005). New self-incompatibility alleles in apricot ( Prunus armeniaca L.) revealed by stylar ribonuclease assay and S -PCR analysis. Euphytica 14: 57-66.

Halász J, Kodad O, Hegedűs A (2014). Identification of a recently active Prunus ‐specific non‐autonomous Mutator element with considerable genome shaping force. Plant J 79: 220-231.

Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucl Acids Symp Ser 41: 95-98.

Mohácsy M (1954). Őszibaracktermesztés. Budapest, Hungary: Mezőgazdasági Kiadó (in Hungarian). Montgomery SB, Goode DL, Kvikstad E, Albers CA, Zhang ZD, Mu XJ, Ananda G, Howie B, Karczewski KJ, Smith KS et al. (2013). The origin, evolution, and functional impact of short insertion–deletion variants identified in 179 human genomes. Genome Res 23: 749-761.

Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA (2008). Database indexing for production MegaBLAST searches. Bioinformatics 15: 1757-1764.

Nuñez-Lillo G, Cifuentes-Esquivel A, Troggio M, Micheletti D, Infante R, Campos-Vargas R, Orellana A, Blanco-Herrera F, Meneses C (2015). Identification of candidate genes associated with mealiness and maturity date in peach [ Prunus persica (L) Batsch] using QTL analysis and deep sequencing. Tree Genet Genomes 11: 1-13.

Olmstead JW, Sebolt AM, Cabrera A, Sooriyapathirana SS, Hammar S, Iriarte G, Wang D, Chen CY, Van der Knaap E, Iezzoni AF (2008). Construction of an intra-specific sweet cherry ( Prunus avium L) genetic linkage map and synteny analysis with the Prunus reference map. Tree Genet Genomes 4: 897-910.

Olsen AN, Ernst HA, Leggio LL, Skriver K (2005). NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10: 79-87.

Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P et al. (2003). Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana . DNA Res 10: 239-247.

Patthy L (2008). Protein Evolution. 2nd ed. Oxford, UK: Blackwell. Pirona R, Eduardo I, Pacheco I, Linge CDS, Miculan M, Verde I, Tartarini S, Dondini L, Pea G, Bassi D et al. (2013). Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biol 13: 166.

Quilot B, Wu BH, Kervella J, Genard M, Foulongne M, Moreau K (2004). QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P davidiana . Theor Appl Genet 109: 884-897.

Ramming DW (1991). Genetic control of a slow-ripening fruit trait in nectarine. Can J Plant Sci 71: 601-603.

Rapaics R (1940). A magyar gyümölcs. Budapest, Hungary: Királyi Magyar Természettudományi Társulat (in Hungarian).

Romeu JF, Monforte AJ, Sánchez G, Granell A, García-Brunton J, Badenes ML, Ríos G (2014). Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biol 14: 52.

Sablowski RW, Meyerowitz EM (1998). A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA . Cell 92: 93-103.

Salazar JA, Ruiz D, Campoy JA, Tartarini S, Dondini L, Martínez- Gómez P (2016). Inheritance of reproductive phenology traits and related QTL identification in apricot. Tree Genet Genomes 12: 1-14.

Shan W, Kuang JF, Chen L, Xie H, Peng HH, Xiao YY, Li XP, Chen WX, He QG, Chen JY et al. (2012). Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening. J Exp Bot 63: 5171–5187.

Shen ZJ, Confolent C, Lambert P, Poëssel JL, Quilot-Turion B, Yu ML, Ma RJ, Pascal T (2013). Characterization and genetic mapping of a new blood-flesh trait controlled by the single dominant locus DBF in peach. Tree Genet Genomes 9: 1435-1446.

Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996). The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85: 159-170.

Sun L, Huang L, Hong Y, Zhang H, Song F, Li D (2015). Comprehensive analysis suggests overlapping expression of rice ONAC transcription factors in abiotic and biotic stress responses. Int J Mol Sci 16: 4306-4326.

Takada S, Hibara KI, Ishida T, Tasaka M (2001). The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128: 1127-1135.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731-2739.

Thompson JD, Higgins DG, Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680.

Tóth MG (1997). Meggy. In: Tóth MG, editor. Gyümölcsészet. Budapest, Hungary: Primon Kiadó, Nyíregyháza, pp. 257-271 (in Hungarian).

Tsukamoto T, Hauck NR, Tao R, Jiang N, Iezzoni AF (2006). Molecular characterization of three non-functional S -haplotypes in sour cherry ( Prunus cerasus ). Plant Mol Biol 62: 371-383.

Wang N, Zheng Y, Xin H, Fang L, Li S (2013). Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera . Plant Cell Rep 32: 61-75.

Zhou H, Lin‐Wang K, Wang H, Gu C, Dare AP, Espley RV, He H, Allan AC, Han Y (2015). Molecular genetics of blood‐fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. Plant J 82: 105-121.