Theoretical study of the reaction mechanism between triphenylphosphine with dimethyl acetylenedicarboxylates in the presence of 2-mercapto thiazoline

Theoretical study of the reaction mechanism between triphenylphosphine with dimethyl acetylenedicarboxylates in the presence of 2-mercapto thiazoline

In this research, the mechanism of the reaction between triphenylphosphine R1 and dimethyl acetylenedicarboxylate R2 was investigated in the presence of NH-acid, such as 2-mercapto thiazoline R3 based on the quantum mechanical calculations. Theoretical studies performed for evaluation of the potential energy surfaces of all structures participated in the reaction mechanism. All structures were optimized at the B3LYP/6-311++g(d,p) levels. The first step of the reaction was recognized as a rate-determining step in the reaction mechanism. To check the effect of solvent on the potential energy surfaces, condensed phase calculations in acetone were carried out with the polarizable continuum model (CPCM). Finally, the natural bond orbital (NBO) method was applied for a better understanding of molecular interaction.

___

  • [1] B. Balali-Mood, Chemistry and classification of OP compounds, in Basic and Clinical Toxicology of Organophosphorus Compounds, " Springer, London, UK, 2014.
  • [2] S. Kumar, G. Kaushik, J.F Villarreal-Chiu, Environmental Science and Pollution Research, 2016, 23, 9480.
  • [3] A.W Johnson, Ylide Chemistry, Academic Press: London, 1966.
  • [4] J.I.G. Cadogan, Organophosphorus Reagents in Organic Synthesis, Academic Press: New York, 1979.
  • [5] R. Engel, Synthesis of Carbon-Phosphors Bonds; CRC Press: Boca Raton, FL, 1988.
  • [6] H.R. Hudson, In The Chemistry of Organophosphorus Compounds; Primary, Secondary, and Tertiary Phosphates and Heterocyclic Organophosphorus(III) Compounds, Wiley, New York, 1990.
  • [7] V. Iaroshenko, Organophosphorus Chemistry: From Molecules to Applications, Wiley‐VCH Verlag GmbH & Co. KGaA, 2019.
  • [8] L. Fitjer, U. Quabeck, The Wittig Reaction Using Potassium-tert-butoxide High Yield Methylenations of Sterically Hindered Ketones, Synth Commun 15 (1985) 855-864.
  • [9] I. Yavari, S. Ali-Asgari, K. Porshamsian, M. Bagheri, Efficient synthesis of functionalized bis-(4-oxo-1,3-thiazole-5-ylidene)acetates, Sulfur Chem 28 (2007) 477-482.
  • [10] A. Ramazan, A. Souldozi, Dipotassium-Hydrogen-Phosphate-Powder-Catalyzed Stereoselective C-Vinylation of Diphenylacetonitril, Phosphorus Sulfur Silicon Relat Elem 180 (2005) 2801-2804.
  • [11] I. Yavari, A.A. Alizadeh, A Simple Approach to the Synthesis of 1,4-Bis(arylsulfonyl)tetrahydropyrazine-2,5-diones, Monatsh Chem 134 (2003) 435-438.
  • [12] A. Ramazani, A. Bodaghi, One-pot, four-component synthesis of dialkyl [indane-1,3-dione-2-ylidene]alkoxysuccinates, Tetrahedron Lett 41 (2000) 567-568.
  • [13] A. Hassanabadi, M. Anary-Abbasinejad, A. Dehghan, Three-Component Reaction of Triphenylphosphine, Dimethyl Acetylenedicarboxylate, and Aldehyde Benzoylhydrazones: An Efficient One-Pot Synthesis of Stable Phosphorus Ylides, Synth Commun 39 (2009) 132-138.
  • [14] S.M. Habibi-Khorassani, M.T. Maghsoodlou, A. Ebrahimi, M. Kazemian, S. Salari, S. Nasiri, 1H NMR Kinetic Investigation of the Equilibrium between the Z- and E-Isomers in a Stable Phosphorus Ylide Involving 2-Mercaptobenzimidazole, Prog React Kinet Mech 38 (2013) 295-304.
  • [15] I. Yavari, M. Adib, F. Jahani-Mogaddam, M.H. Sayahi, A Simple Synthesis of Stable Heterocyclic Phosphorus Ylides Derived from NH-Acids, Phosphor Sulfur Silicon Relat Elem 177 (2002) 545-553.
  • [16] M.R. Islami, I. Yavari, A.M. Tikdari, L. Ebrahimi, S. Razee, H.R. Bijanzadeh, A Practical Method for Synthesis of Stable Phosphorus Ylides in Aqueous, Media ChemInform 34 (2003) 124-147.
  • [17] M. Ziyaadini, M.T. Maghsoodlou, N. Hazeri, S.M. Habibi‐Khorassani, Synthesis of New Stable Phosphorus Ylidesand 1,4-Diionic Organophosphorus Compoundfrom a Reaction between HexamethylPhosphorous Triamide and DimethylAcetylenedicarboxylate in the Presence of CH-Acids, Heteroat Chem 24 (2013) 84-89.
  • [18] I. Yavari, Z. Hossain, A. Alizadeh, Diastereoselective Synthesis of meso-Bisphosphonates from Trialkyl(aryl) Phosphites and Activated Acetylenes in the Presence of 4-Nitrophenol, Monatsh Chem 137 (2006) 1083-1088.
  • [19] M.T. Maghsoodlou, N. Hazeri, S.M. Habibi-Khorassani, A. Ghulame-Shahzadeh, M. Nassiri, Simple Synthesis of Stable Phosphorus Ylides from Indole and Some of Its Derivatives, Phosphor Sulfur Silicon Relat Elem 18 (2006) 913-919.
  • [20] M.T. Maghsoodlou, R. Heydari, S.M. Habibi-Khorassani, M.K. Rofouei, M. Nassiri, E. Mosaddegh, A. Hassankhani, Chemoselective synthesis of phosphorus ylides through the reaction of 2-mercaptobenzimidazole and 2-hydroxybenzimidazole with triphenylphosphine and acetylenic esters, Sulfur Chem 27 (2006) 341-346.
  • [21] S.M. Habibi-Khorassani, T. Maghsoodlou, A. Ebrahimi, M. Zakarianejad, M. Fattahi, Kinetics and Mechanism of the Reactions Between Triphenylphosphine, Dialkyl Acetylenedicarboxilates and an NH-Acid, Pyrazole, by UV, Spectrophotometry Solution Chem 36 (2007) 1117-1127.
  • [22] M. Zakarianezhad, B. Makiabadi, S.S. Hosseini, Theoretical study of the reaction mechanism between triphenylphosphine with dialkyl acetylenedicarboxylates in the presence of benzotriazole, Theor Chem Acc 140 (2021) 13-25.
  • [23] M. Moradian, S.M.H. Khorassani, M.T. Maghsoodlou, A. Ebrahimi, M. Zakarianezhad, P. Karimi, Kinetic and Mechanism Investigation of the Reactions of Triphenylphosphine, Dialkyl Acetylenedicarboxylates and NH-Acids by Ultra Violet, Asian J Chem 21 (2009) 1069-1080.
  • [24] S.M. Habibi-Khorasani, A. Ebrahimi, M.T. Maghsoodlou, S. Same-Salari, S. Nasiri, H. Ghasempour, Dynamic 1H NMR study around the carbon–carbon single bond and partial carbon–carbon double bond in the two particular phosphorus ylides and in an enaminoester, Magn Reson Chem 49 (2011) 213–220.
  • [25] R. Kabiri, N. Hazeri, S.M. Habibi-Khorasani, M.T. Maghsoodlou, A. Ebrahimi, L. Saghatforoush, G. Marandi, Z. Razmjoo, Synthesis, dynamic 1H NMR and theoretical study of aryl-nitrogen single bond rotational energy barriers in highly functionalized 4H-chromenes, Arkivoc xvii (2008) 12-19.
  • [26] M.T. Maghsoodlou, N. Hazeri, S.M. Khorassani, M. Nassiri, G. Marandi, G. Afshari, U. Niroumand, An efficient synthesis of stable sulfurcontaining phosphoranes derived from 2-mercapto-1-methylimidazole and 2-thiazoline-2-thiol, J Sulfur Chem 26 (2005) 261-266.
  • [27] S.M. Habibi-Khorassani, A. Ebrahimi, M.T. Maghsoodlou, H. Saravani, M. Zakarianezhad, M. Ghahramaninezhat, M.A. Kazemian, M. Nassiri, Z. Khajehali, Theoretical study, an efficient synthesis route to, and kinetic investigation of, stable phosphorus ylides derived from benzamide, Prog React Kinet Mech 34 (2009) 261-288.
  • [28] M. Zakarianezhad, P. Mohammad Dadi, Mechanistic investigation of the reaction of thiourea with dialkyl acetylenedicarboxylates: A theoretical study Sulfur Chem., 2015, 36, 422-433.
  • [29] M. Zakarianezhad, S.M. Habibi-Khorassani, A. Ebrahimi, M.T. Maghsoodlou, H. Ghasempour, NMR study, theoretical calculations for assignment of the Z- and E-isomers, and kinetics investigation of stable phosphorus ylides involving a 2-mercapto-4,6-dimethyl pyrimidine, Heteroat Chem 21 (2010) 462-474.
  • [30] S.M Habibi-Khorassani, M.T. Maghsoodlou, H. Ghasempour, M. Zakarianezhad, M. Nassiri, Z. Ghahghaie, AIM analysis, synthetic, kinetic and mechanistic investigations of the reaction between triphenylphosphine and dialkyl acetylenedicarboxylate in the presence of 3-methoxythiophenol, J Chem Sci 125 (2013) 387-399.
  • [31] H.R. Masoodi, M. Zakarianezhad, S. Bagheri, B. Makiabadi, M. Shool, Substituent effects on some calculated NMR data in T-shapedconfiguration of benzene dimer, Chem Phys Lett 61 (2014) 143-147.
  • [32] M. Zakarianejad, H. Ghasempour, S.M. Habibi-Khorassani, M.T. Maghsoodlou, B. Makiabadi, M. Nassiri, Z. Ghahghayi, A. Abedi, Theoretical study, synthesis, kinetics and mechanistic investigation of a stable phosphorus ylide in the presence of methyl carbamate as a NH-acid, Arkivoc 2013 (2013) 171-190.
  • [33] M. Zakarianezhad, S.M. Habibi-Khorassani, M.T. Maghsoodlou, B. Makiabadi, Understanding the mechanism of stable phosphorus ylides derived from imidazole, 2-Methylimidazole or 4-Methylimidazole: A kinetic study, Orien J Chem 28 (2012) 1259-1269.
  • [34] D. Suárez, M. Zakarianezhad, R. López, Insights into the hydrolytic chemistry of molybdocene dichloride based on a theoretical mechanistic study, Theor Chem Acc 132 (2013) 1-11.
  • [35] [35] M. Zakarianezhad, S.M. Habibi-Khorassani, Z. Khajehali, B. Makiabadi, M. Feyzi, A. Taheri, Mechanistic investigation of the reaction between triphenylphosphine, dialkyl acetylenedicarboxylates and pyridazinone: A theoretical, NMR and kinetic study, Reac Kinet Mech Catal 111 (2014) 461-474.
  • [36] H.R. Masoodi, S. Bagheri, M. Mohammadi, M. Zakarianezhad, B. Makiabadi, The influence of cation-Π and anion-Π interactions on some NMR data of s-triazine. HF hydrogen bonding: A theoretical study, Chem Phys Lett 588 (2013) 31-36.
  • [37] H. Roohi, A.R. Nowroozi, A. Ebrahimi, B. Makiabadi, Effect of CH3CO functional group on the molecular and electronic properties of BN43zz nanotube: A computational chemistry study, J Mol Struct 952 (2010) 36-45.
  • [38] H. Roohi, B. Mackiabadi, Conformations of O3-F 1:1 complexes. an Ab initio study, Bull Chem Soc Jpn 80 (2007) 1914-1919.
  • [39] B. Makiabadi, H. Kian, The hydrogen bond interactions in glycine-nitrosamine complexes: A DFT study, Monatsh Chem 146 (2015) 69-78.
  • [40] B, Makiabadi, Z.A. Tajaddini, Theoretical Investigation of Proton Transfer in Thiazolidine-2-thione and Oxazolidine-2-thione via Direct Transition and Self-Assisted and Water-Assisted Tautomerization, Chem Heterocycl Compd 51 (2015) 361-369.
  • [41] M. Frisch, G. Trucks, H.B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G, Petersson, Gaussian 09, Revision A. 02, Gaussian. Inc, Wallingford, CT, 2009.
  • [42] C. Gonzalez, H.B. Schlegel, Reaction path following in mass-weighted internal coordinates, J Phys Chem 94 (1990) 5523-5527.
  • [43] C. Gonzalez, H.B. Schlegel, An improved algorithm for reaction path following, J Chem Phys 90 (1989) 2154.
  • [44] J. Tomasi, M. Persico, Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent, Chem Rev 94 (1994) 2027-2094.
  • [45] E. Cances, B. Mennucci, A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics, J Tomasi J Chem Phys 107 (1997) 3032-3041.
  • [46] M. Cossi, V. Barone, R. Cammi, J, Tomasi, Ab initio study of solvated molecules: a new implementation of the polarizable continuum model, Chem Phys Lett 255 (1996) 327-355.
  • [47] D.E. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO, Version 3.1.
  • [48] J.S. Murray, P. Politzer, Electrostatic potentials: chemical applications,in: Schleyer PvR (Ed.),Encyclopedia of Computational Chemistry, Wiley, West Sussex, 1998, 912-920.
  • [49] J.S. Murray, K. Sen, Molecular Electrostatic Potentials: Concepts and Applications, Elsevier, Amsterdam, 1996.
  • [50] T. Lu, S. Manzetti, Wavefunction and reactivity study of benzo [a] pyrene diol epoxide and its enantiomeric forms, J Struct Chem 25 (2014) 1521-1533.
  • [51] B.P.S. Gautam, M. Srivastava, R.L. Prasad, R.A. Yadav, Synthesis, characterization and quantum chemical investigation of molecular structure and vibrational spectra of 2, 5-dichloro-3,6-bis-(methylamino)1,4-benzoquinone, Spectrochim Act A Mol Biomol Spectrosc 129 (2014) 241-254.
  • [52] M. Zakarianezhad, B. Makiabadi, M. Shool, Experimental and theoretical study of stable phosphorus ylides derived from indazole in the presence of different dialkyl acetyelenedicarboxylates: Further insights into the reaction mechanism, J Chil Chem Soc 61 (2016) 2929-2934.
  • [53] S.M. Habibi-Khorassani, M.T. Maghsoodlou, A. Ebrahimi, H. Roohi, M. Zakarianezhad, M. Moradian, Kinetic investigation of the reactions between triphenylphosphine, dialkyl acetylenedicarboxylates and SH-acid such AS 2-thiazoline-2-thiol or 2-mercaptobenzoxazole by UV spectrophotometry, Prog React Kinet 30 (2005) 127-144.
  • [54] S.M. Habibi Khorassani, M.T. Maghsoodlou, A. Ebrahimi, H. Roohi, M. Zakarianezhad, H.R. Dasmeh, P Kinetic investigation of the reaction between triphenylphosphine, dialkyl acetylenedicarboxylate, and carbazole by the UV spectrophotometry technique, Phosphorus Sulfur Silicon Relat Elem 181 (2006)1103-1115.
  • [55] H. Ghasempour, M. Zakarianezhad, B. Makiabadi, S.M. Habibi-Khorassani, Mechanism investigation of stable phosphorus ylides derived from saccharine in the presence of different dialkyl acetylenedicarboxylates: Experimental and theoretical study, Iran J Sci Technol Trans A Sci 40 (2016) 255-265.
  • [56] M. Zakarianezhad, B. Makiabadi, P. Sotoodeh, E. Zeydabadi, Investigation of the reaction mechanism between cyclohexyl isocyanide and dimethyl acetylenedicarboxylate in the presence of 2-mercaptobenzoxazole: a theoretical study, Phosphorus Sulfur Silicon Relat Elem 196 (2021) 656-663.
  • [57] M. Zakarianezhad, S.M. Habibi-Khorassani, M.T. Maghsoodlou, B. Makiabadi, H. Ghasempour, Understanding the mechanism of stable phosphorus ylides derived from maleimide: A kinetic study, Iran J Sci Technol Trans A Sci 36 (2012) 251-258.
  • [58] C, Eckart, The Penetration of a Potential Barrier by Electrons, Phys Rev 35 (1930) 1303-1309.