Theoretical investigation on electrophilicity indexes and proton affinities of some boron-nitrogen open-chain species

Theoretical investigation on electrophilicity indexes and proton affinities of some boron-nitrogen open-chain species

Some neutral boron-nitrogen open-chain compounds were optimized at Hartree-Fock (HF) methods with cc-pvdz basis set in gas phase. Atomic charges were determined by the natural bond orbital (NBO) analysis. HOMO composition was calculated from the atomic orbital coefficients. The compounds were protonated from the atom supplying the highest contribution to HOMO and deprotonated from the most positive charged atom. Electrophilicity indexes of all the species were determined from the optimized structures. A parabolic curve was obtained from the graph of nucleophilicity parameters against electrophilicity indexes of all the chemical species. Electrophilicity indexes of the cationic species were found to be higher than the neutral and anionic species.  Electrophilicity indexes increased with increasing of boron/nitrogen ratio for the neutral and cationic species and decreased with increasing of boron/nitrogen ratio for the anionic species. Proton affinities of the neutral and anionic species were calculated to determine their basicities. Proton affinities of the neutral species increased with decreasing of electrophilicity and boron/nitrogen ratio. Whereas proton affinities of the anionic species increased with increasing of electrophilicity.

___

  • [1] J. Zhang, Q. Shu Li, S. Zhang, Theoretical study on the structures of boron–nitrogen alternant open chain compounds, Journal of Molecular Structure: THEOCHEM 715 (2005) 133–141.
  • [2] R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, The Journal of Chemical Physics 68 (1978) 3801-3807.
  • [3] R. G. Parr, R. G. Pearson, Absolute hardness: companion parameter to absolute electronegativity, J. Am. Chem. Soc. 105 (1983) 7512-7516.
  • [4] T. A. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms, Physica 1 (1933) 104-113.
  • [5] R. G. Pearson, The principle of maximum hardness, Accounts of Chemical Research 26 (1993) 250-255.
  • [6] R. G. Pearson, Chemical hardness and density functional theory, Journal of Chemical Sciences 117 (2005) 369-377.
  • [7] R. G. Parr, L. V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922-1924.
  • [8] S. Kiyooka, D. Kaneno, R. Fujiyama, Parr’s index to describe both electrophilicity and nucleophilicity, Tetrahedron Letters 54 (2013) 339–342.
  • [9] J. E. Huheey, E. A. Keitler, R. L. Keitler, O. K. Mehdi, Inorganic Chemistry, Principles of Structure and Reactivity, Fourth Edition, Pearson, 1993, 223.
  • [10] R. D. Dennington II, T. A. Keith, J. M. Millam, GaussView 5.0.8, Wallingford, CT, (2009).
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, GAUSSİAN 09, Revision A.02, Gaussian, Inc., Wallingford CT (2009).
  • J. A. Pople, R. K. Nesbet, Self‐Consistent Orbitals for Radicals, The Journal of Chemical Physics 22 (1954) 571.
  • A. D. Becke, Density‐functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics 98 (1993) 5648-5652.
  • C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B 37 (1988) 785-789.
  • M. J. Frisch, M. Head-Gordon, J. A. Pople, A direct MP2 gradient method, Chemical Physics Letters 166 (1990) 275-280.
  • M. Head-Gordon, J. A. Pople, M. J. Frisch, MP2 energy evaluation by direct methods, Chemical Physics Letters 153 (1988) 503-506.
  • T.H. Dunning Jr, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, The Journal of Chemical Physics 90 (1989) 1007-1023.
  • R.A. Kendall, T.H. Dunning Jr, R.J. Harrison, Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions, The Journal of Chemical Physics 96 (1992) 6796-6806.
  • D.E. Woon, T.H. Dunning Jr, Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon, The Journal of Chemical Physics 98 (1993) 1358-1371.
  • Ş. Güveli, N. Özdemir, T. Bal-Demirci, B. Ülküseven, M. Dinçer, Ö. Andaç, Quantum-chemical, spectroscopic and X-ray diffraction studies on nickel complex of 2-hydroxyacetophenone thiosemicarbazone with triphenylphospine, Polyhedron 29 (2010) 2393–2403
  • [21] K. Sayın, D. Karakaş, Quantum chemical studies on the some inorganic corrosion inhibitors, Corrosion Science 77 (2013) 37-45.