Spectroscopic and Quantum Chemical Studies on Some β-Lactam Inhibitors

Spectroscopic and Quantum Chemical Studies on Some β-Lactam Inhibitors

Amoxicillin (Amox) and ampicillin (Amp) are investigated by using quantum mechanical methods. This compounds was confirmed by XRD analysis and optimized bond parameters were calculated by density functional (DFT) at B3LYP/6-31G(d) level.  The optimized geometrical parameters are in good agreement with crystal data. The experimentally observed FT-IR and NMR picks were assigned to calculated modes for the molecules. Some molecular descriptors are calculated with density functional theory (DFT/B3LYP) 6-31G(d) level in the gas phase. The highest occupied molecular orbital energy (EHOMO), the lowest unoccupied molecular orbital energy (ELUMO), the energy difference (ΔE), hardness (η), softness (σ), electronegativity (χ), chemical potential (µ), electrophilicty index (ω) and nucleophilicty index (ε) are calculated in the this level and associated with inhibition efficiencies of the mentioned β-lactam inhibitors. Molecular Electrostatic Potantial (MEP) maps was investigated and predicted the reactive sites. Some quantum chemical descriptors which are total static dipole moment (µ), the average linear polarizability (α), the anisotropy of the polarizability (Δα) and first hyperpolarizability (β) were evaluated for explaining the NLO properties in studies molecules. The inhibition activities were studied using molecular docking studies. The antibiotics were docked into the cocrystallized structure of PXR with SR12813 (PDB ID: 1NRL). Docking results and order of inhibition activity associated with quantum chemical parameters was the same as that of experimental inhibition activity.

___

  • [1] John D. Buynak. Understanding the longevity of the b-lactam antibiotics and of antibiotic/b-lactamase inhibitor combinations. Biochemical pharmacology, 71(2006)930 –940.
  • [2] Gökhan Gece, Drugs: A review of promising novel corrosion inhibitors, Corrosion Science 53 (2011) 3873–3898
  • [3] M.S. Forman, J.Q. Trojanowski, V.M-Y. Lee, Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs, Nat. Med. 10 (2004) 1055–1063.
  • [4] J.D. Rothstein, S. Patel, M.R. Regan, C. Haenggeli, Y.H. Huang, D.E. Bergles, L. Jin, M.D. Hoberg, S. Vidensky, D.S. Chung, S.V. Toan, L.I. Bruijn, Z.Z. Su, P. Gupta, P.B. Fisher, b-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression, Nature 433 (2005) 73–77.
  • [5] K.J. Barnham, C.L. Masters, A.I. Bush, Neurodegenerative diseases and oxidative stress, Nat. Rev. Drug Discov. 3 (2004) 205–214.
  • [6] J.S. Valentine, P.J. Hart, Bioinorganic chemistry special feature: misfolded CuZnSOD and amyotrophic lateral sclerosis, Proc. Natl. Acad. Sci. USA 100 (2003) 3617–3622.
  • [7] M. Azzouz, P. Poindron, S. Guettier, N. Leclerc, C. Andres, J.M. Warter, J. Borg, Prevention of mutant SOD1 motoneuron degeneration by copper chelators in vitro, J. Neurobiol. 42 (2000) 49–55.
  • [8] A. Sher, M. Veber, M. Marolt-Gomisˇcˇek, Spectroscopic and polarographic investigations: copper (II)–penicillin derivatives, Int. J. Pharm. 148 (1997) 191–199.
  • [9] A. Sher, M. Veber, M. Marolt-Gomiscek, S. Gomiscek, The study of complexation of copper(II) with ampicillin. I. Spectroscopic and electrochemical investigations of interactions at equilibrium conditions, Int. J. Pharm. 90 (1993) 181–186.
  • [10] G. Mukherjee, T. Ghosh, Metal ion interaction with Penicillins. Part VII: Mixed-ligand complex formation of cobalt(II), nickel(II), copper(II), and Zinc(II) with ampicillin and nucleic bases, J. Inorg. Biochem. 59 (1995) 827–833.
  • [11] Valentina Gamba, Guglielmo Dusi, Liquid chromatography with fluorescence detection of amoxicillin and ampicillin in feeds using pre-column derivatization, Analytica Chimica Acta, 483, 25 April 2003, Pages 69–72.
  • [12] Şirin Bitmez, Koray Sayin, Bariş Avar, Muhammet Köse, Ahmet Kayraldız, Mükerrem Kurtoğlu, Preparation, spectral, X-ray powder diffraction and computational studies and genotoxic properties of new azo–azomethine metal chelates, 1076, 2014, Pages 213–226.
  • [13] P. Politzer, D.G. Truhlar, Chemical Applications of Atomic and Molecular Electrostatic Potentials. Academic Press, New York, 1981.
  • [14] A. Bergamo, G. Sava, Dalton Trans. (2011) 40, 7817-7823.
  • [15] C. G. Hartinger, M. A. Jakupec, S. Zorbas-Seifried, M. Groessl, A. Egger, W. Berger, H. Zorbas, P. J. Dyson, B. K. Keppler, Chem. Biodiversity (2005) 5, 2140-2154.
  • [16] Mohamed K. Awad, Mohamed R. Mustafa, Mohamed M. Abo Elnga, Computational simulation of the molecular structure of some triazoles as inhibitors for the corrosion of metal surface, Journal of Molecular Structure: THEOCHEM 959 (2010) 66–74.
  • [17] Jeffrey P. Merrick, Damian Moran, Leo Radom, An Evaluation of Harmonic Vibrational Frequency Scale Factors, J. Phys. Chem. A 2007, 111, 11683-11700.
  • [18] D. Sajan, J. Hubert, V.S. Jayakumar, J. Zaleski, J. Mol. Struct. 785 (2006) 43–53.
  • [19] T. Koopmans physica 1933,1,104
  • [20] S. Kaya, S. Erkan Kariper, A. Ungördü, C. Kaya, Effect of Some Electron Donor and Electron Acceptor Groups on Stability of Complexes According to the Principle of HSAB, Journal of New Results in Science, 4 (2014) 82-89.
  • [21] D.B. Alexander, A.A. Moccari, Evaluation of corrosion inhibitors for component cooling water systems, Corrosion Science. 49 (1993) 921–928.
  • [22] V.S. Sastri, J.R. Perumareddi, Corrosion 53 (1996) 671.
  • [23] W. Kohn, L.J. Sham, Quantum density oscillations in an inhomogeneous electron gas, Physical Review 137 (1965) A1697–A1705.
  • [24] R.G. Pearson, Inorg. Chem. 27 (1988) 734.
  • [25] R. G. Parr, V.Szentpaly, S. Liu, J.Amc. Chem. Soc. 121(1999) 1922
  • [26] S. Kiyooka, D. Kaneno, R. Fujiyama, Tetrahedron Letters, 54 (2013) 339
  • [27] Koray Sayin, Duran Karakas, Nihat Karakus, Tuba Alagöz Sayin, Zinet Zaim, Sultan Erkan Kariper, Spectroscopic investigation, FMOs and NLO analyses of Zn(II) and Ni(II) phenanthroline complexes: A DFT approach, Polyhedron 90 (2015) 139–146.
  • [28] http://cccbdb.nist.gov/vibscalejust.asp
  • [29] D. Rajaraman, G. Sundararajan, N.K. Loganath, K. Krishnasam, Synthesis, molecular structure, DFT studies and antimicrobial activities of some novel 3-(1-(3,4-dimethoxyphenethyl)-4,5-diphenyl-1H-imidazol-2-yl)-1H-indole derivatives and its molecular docking studies, Journal of Molecular Structure 1127 (2017) 597-610.
  • [30] R. Di Stefano, M. Scopelliti, C. Pellerito, T. Fiore, R. Vitturi, M.S. Colomba, P. Gianguzza, G.C. Stocco, M. Consiglio, L. Pellerito, Organometallic complexes with biological molecules XVII. Triorganotin(IV) complexes with amoxicillin and ampicillin, Journal of Inorganic Biochemistry 89 (2002) 279–292.
  • [31] R. Ditchfield, Molecular orbital theory of magnetic shielding and magnetic susceptibility, J. Chem. Phys. 56 (1972) 5688-5692.
  • [32] M. Abdallah, Antibacterial drugs as corrosion inhibitors for corrosion of aluminium in hydrochloric solution. Corrosion Science 46 (2004) 1981–1996.
  • [33] D.B. Alexander, A.A. Moccari, Evaluation of corrosion inhibitors for component cooling water systems, Corrosion 49 (1993) 921–928.
  • [34] A.J. LopesJesus, Luciana I.N. Tomé, M. Ermelinda, S. Eusébio, Mário T.S. Rosado, J.S. Redinha, Hydration of cyclohexylamines: CPCM calculation of hydration gibbs energy of the conformers, Journal of Physical Chemistry A 111 (2007) 3432–3437.
  • [35] P. Udhayakala, A. Maxwell Samuel, T. V. Rajendiran and S. Gunasekaran, Quantum chemical study on inhibitory action of some substituted 1,3,4-oxadiazoles on mild steel, Der Pharmacia Lettre, 2013, 5 (2):272-283
  • [36] Martınez S, Mater Chem and Phys., 2002; 77: 97-102.
  • [37] R. Parthasarathi, V. Subramanian, D. R. Roy and P. K. Chattaraj, Electrophilicity index as a possible descriptor of biological activity, Bioorganic & MedicinalChemistry 12 (2004) 5533–5543.
  • [38] R. G. Parr, V.Szentpaly, S. Liu, J.Amc. Chem. Soc. 121(1999) 1922.
  • [39] Parthasarathi, R.; Padmanabhan, J.; Subramanian, V.; Maiti, B.; Chattaraj, P. K. J. Phys. Chem. A 2003, 107, 10346;
  • [40] Thanikaivelan, P.; Subramanian, V.; Raghava Rao, J.; Nair, B. U. Chem. Phys. Lett. 2000, 323, 59;
  • [41] Parthasarathi, R.; Padmanabhan, J.; Elango, M.; Subramanian, V.; Chattaraj, P. K. Chem. Phys. Lett. 2004, 394, 225
  • [42] Parthasarathi, R.; Padmanabhan, J.; Subramanian, V.; Maiti, B.; Chattaraj, P. K. Curr. Sci. 2004, 86, 535.
  • [43] Parthasarathi, R.; Padmanabhan, J.; Subramanian, V.; Sarkar, U.; Maiti, B.; Chattaraj, P. K. Internet Electron J. Mol. Des. 2003, 2, 798.
  • [44] N.O. Obi-Egbedi, I.B. Obot, M.I. El-Khaiary, Quantum chemical investigation and statistical analysis of the relationship between corrosion inhibition efficiency and molecular structure of xanthene and its derivatives on mild steel in sulphuric acid, Journal of Molecular Structure 1002 (2011) 86-96.
  • [45] P. Politzer, D.G. Truhlar, Chemical Applications of Atomic and Molecular Electrostatic Potentials. Academic Press, New York, 1981
  • [46] M. Wagener, J. Sadowysky, J. Gasteiger, J. Am. Chem. Soc. 117 (1995) 7769–7775.
  • [47] Jayaraman Jayabharathi, Venugopal Thanikachalam, Marimuthu Venkatesh Perumal, Natesan Srinivasan, Fluorescence resonance energy transfer from a bio-active imidazole derivative 2-(1-phenyl-1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenol to a bioactive indoloquinolizine system, Spectrochimica Acta Part A 79 (2011) 236–244.
  • [48] G.C. Muscia et al. / European Journal of Medicinal Chemistry 46 (2011) 3696e3703Synthesis, trypanocidal activity and molecular modeling studiesof 2-alkylaminomethylquinoline derivatives.
  • [49] P.S. Kushwaha, P.C. Mishra, Int. J. Quant. Chem. 76 (2000) 700.
  • [50] A. Kumar, C.G. Mohan, P.C. Mishra, J. Mol. Struct. (Theochem) 361 (1996) 135.
  • [51] C. Santosh, P.C. Mishra, J. Mol. Model 3 (1997) 172.
  • [52] P.C. Mishra, A. Kumar, J.S. Murray, K.D. Sen (Eds.), Molecular Electrostatic Potentials: Concepts and Applications, Theoretical and Computational Chemistry Book Series, vol. 3, Elsevier, Amsterdam, 1996, p. 257.
  • [53] A.K. Singh, P.S. Kushwaha, P.C. Mishra, Int. J. Quant. Chem. 82 (2001) 299.
  • [54] M.K. Shukla, P.C. Mishra, J. Mol. Struct. (Theochem) 340 (1995) 159.
  • [55] Muhammet Kose, Ceylan Hepokur, Duran Karakas, Vickie McKee, Mukerrem Kurtoglu, Structural, computational and cytotoxic studies of square planar copper(II) complexes derived from dicyandiamide, Polyhedron, 117, 2016, 652–660.
  • [56] Ramchander Merugu, Uttam Kumar Neerudu, Karunakar Dasa, Kalpana V. Singh, Molecular docking studies of deacetylbisacodyl with intestinal sucrase-maltase enzyme, International Journal of Advances in Scientific Research 2016; 2(12): 191-193.
  • [57] Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K. Crystal structure of human serum albumin at 2.5 Aresolution. Protein Eng 1999;12:439-46.
  • [58] Khandelwal A, Krasowski MD, Reschly EJ, Sinz M, Swaan PW and Ekins S (2008) Machine learning methods and docking for predicting human pregnane X receptor activation. Chem Res Toxicol, in press.
  • [59] Ramchander Merugu, Uttam Kumar Neerudu, Karunakar Dasa, Kalpana V. Singh, Molecular docking studies of deacetylbisacodyl with intestinal sucrase-maltase enzyme, International Journal of Advances in Scientific Research 2016; 2(12): 191-193.
  • [60] Dipita Bhakta, Ramamoorthy Siva, Morindone, an Anthraquinone, Intercalates DNA Sans Toxicity: a Spectroscopic and Molecular Modeling Perspective, Appl Biochem Biotechnol (2012) 167:885–896.