A DFT Study of Si Doped Graphene: Adsorption of Formaldehyde and Acetaldehyde

A DFT Study of Si Doped Graphene: Adsorption of Formaldehyde and Acetaldehyde

In this study, Si doped graphene sensor property for indoor volatile contaminants formaldehyde and acetaldehyde has been examined. The B3LYP hybrid method with 6-31G(d,p) basis set has been used for this purpose. The adsorption energy of formaldehyde and acetaldehyde have been found to be -24.5 and -33.3 kcal/mol, respectively. The characteristic C=O bond frequency has been decreased after adsorption of the molecules and the bond peaks frequencies have been decreased in both aldehydes. There was a charge transfer from adsorbent to formaldehyde oppositely from acetaldehyde to adsorbent.

___

  • [1] Y. Zou, F. Li, Z. H. Zhu, M. W. Zhao , X. G. Xu, & X. Y. Su, An ab initio study on gas sensing properties of gşraphene and Si-doped graphene, The European Physical Journal B, 81.4 (2011) 475-479.
  • [2] Y. Tang, Z. Liu, X. Dai, Z. Yang, W. Chen, D. Ma, & Z. Lu, Theoretical study on the Si-doped graphene as an efficient metal-free catalyst for CO oxidation, Applied surface science, 308 (2014) 402-407.
  • [3] S. G. Chatterjee, S. Chatterjee, A. K. Ray, A. K. Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: a review, Sensors and Actuators B: Chemical, 221 (2015): 1170-1181.
  • [4] S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, S., & A. Abdala, Recent advances in graphene based gas sensors, Sensors and Actuators B: Chemical, 218 (2015) 160-183.
  • [5] V. E. C. Padilla, M. T. R. de la Cruz, Y. E. Á. Alvarado, R. G. Díaz, C. E. R. García, & G. H. Cocoletzi, Studies of hydrogen sulfide and ammonia adsorption on P-and Si-doped graphene: density functional theory calculations, Journal of molecular modeling, 25.4 (2019) 94.
  • [6] Y. Chen, B. Gao, J. X. Zhao, Q. H. Cai, H. G. Fu, Si-doped graphene: an ideal sensor for NO-or NO2-detection and metal-free catalyst for N2O-reduction, Journal of molecular modeling, 18.5 (2012) 2043-2054.
  • [7] F. Niu, J. M. Liu, L. M. Tao, W. Wang, & W. G. Song, Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing, Journal of Materials Chemistry A, 1.20 (2013) 6130-6133.
  • [8] Y. Chen, X. C. Yang, Y. J. Liu, J. X. Zhao, Q. H. Cai, & X. Z.Wang, Can Si-doped graphene activate or dissociate O2 molecule?, Journal of Molecular Graphics and Modelling, 39 (2013) 126-132.
  • [9] T. Tunsaringkarn, T. Prueksasit, D. Morknoy, W. Siriwong, N. Kanjanasiranont, S. Semathong, S., K. Zapaung, Health risk assessment and urinary biomarkers of VOCs exposures among outdoor workers in urban area, Bangkok, Thailand, Int. J. Environ. Pollut. Solut 2 (2014) 32-46.
  • [10] C. Elosua, I. R. Matias, I. C. Bariain, & F. J. Arregui, Volatile organic compound optical fiber sensors: A review, Sensors 6.11 (2006) 1440-1465.
  • [11] S. Guo, C. Mei, 13 C isotope evidence for photochemical production of atmospheric formaldehyde, acetaldehyde, and acetone pollutants in Guangzhou, Environmental chemistry letters, 11.1 (2013) 77-82.
  • [12] H. Duan, W. Deng, Z. Gan, D. Li, & D. Li, SERS-based chip for discrimination of formaldehyde and acetaldehyde in aqueous solution using silver reduction, Microchimica Acta, 186.3 (2019) 175.
  • [13] R. Majidi, and A. R. Karami, Adsorption of formaldehyde on graphene and graphyne. ,
  • [14] X. Y. Liu, and J. M. Zhang, Formaldehyde molecule adsorbed on doped graphene: a first-principles study, Applied surface science, 293 (2014) 216-219.
  • [15] Beheshtian, J., Ahmadi P., and M. Noei, Sensing behavior of Al and Si doped BC3 graphenes to formaldehyde. Sensors and Actuators B: Chemical, 181 (2013) 829-834.
  • [16] Q. Zhou, L. Yuan, X. Yang, Z. Fu, Y. Tang, C. Wang, & H. Zhang, DFT study of formaldehyde adsorption on vacancy defected graphene doped with B, N, and S. Chemical Physics, 440 (2014) 80-86.
  • [17] J. Ye, X. Zhu, B. Cheng, J. Yu & C. Jiang, Few-layered graphene-like boron nitride: a highly efficient adsorbent for indoor formaldehyde removal, Environmental Science & Technology Letters, 4.1 (2017) 20-25.
  • [18] D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, J. Yang, Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide, Sensors and Actuators B: Chemical, 250 (2017) 533-542.
  • [19] Y. Wang, M. Zhu, L. Kang, & B. Dai, Density functional theory study of side-chain alkylation of toluene with formaldehyde over alkali-exchanged zeolite, Microporous and mesoporous materials, 196 (2014) 129-135.
  • [20] X. Chu, T. Hu, F. Gao, Y. Dong, W. Sun, L. Bai, Gas sensing properties of graphene–WO3 composites prepared by hydrothermal method, Materials Science and Engineering: B, 193 (2015) 97-104.
  • [21] Q. Meng, Y. Shen, J. Xu, X. Ma, & J. Gong, Mechanistic understanding of hydrogenation of acetaldehyde on Au (111): a DFT investigation, Surface Science, 606.21-22 (2012) 1608-1617.
  • [22] W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects, Physical Review Journal Archive 140 (1965) A1133–A1138.
  • [23] A. T. Bilgiçli, H. G. Bilgiçli, A. Günsel, H. Pişkin, B. Tüzün, M. N. Yarasir, & M. Zengin, The new ball-type zinc phthalocyanine with SS bridge; Synthesis, computational and photophysicochemical properties, Journal of Photochemistry and Photobiology A: Chemistry, 389 (2020) 112287.
  • [24] J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G., Gaussian, Inc.,Wallingford CT, 2013.
  • [25] A. D. Becke, Density‐functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics 98 (1993) 5648.
  • [26] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. J. Frisch, J. Phys. Chem. 1994, 98, 11623-11627.
  • [27] J. Tirado-Rives and W. L. Jorgensen, Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules , J. Chem. Theory Comput., (2008) 4, 297-306.
  • [28] S. Thakur, S.M. Borah, N.C. Adhikary, A DFT study of structural, electronic and optical properties of heteroatom doped monolayer graphene, Optik 168 (2018) 228–236.
  • [29] A.S. Rad, First principles study of Al-doped graphene as nanostructureadsorbent for NO2and N2O: DFT calculations, Applied Surface Science 357 (2015) 1217–1224.
  • [30] A.S. Rad, Adsorption of mercaptopyridine on the surface of Al- and B-doped graphenes: Theoretical study, Journal of Alloys and Compounds 682 (2016) 345-351.
  • [31] D. G. Sangiovanni, G. K. Gueorguiev and A. Kakanakova-Georgieva, Ab initio molecular dynamics of atomic-scale surface reactions: insights into metal organic chemical vapor deposition of AlN on graphene, Phys. Chem. Chem. Phys. 20 (2018) 17751-17761.
  • [32] X. Rozanska, R.A. van Santen, F. Hutschka, J. Hafner, A periodic DFT study of intramolecular isomerization reactions of toluene and xylenes catalyzed by acidic mordenite, J. Am. Chem. Soc. 123 (2001) 7655–7667.
  • [33] A.M. Vos, X. Rozanska, R.A. Schoonheydt, R.A. van Santen, F. Hutschka, J. Hafner, A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite, J. Am. Chem. Soc. 123 (2001) 2799–2809.
  • [34] C. Ricca, F. Labat, C. Zavala, N. Russo, C. Adamo, G. Merino, & E. Sicilia, B,N-Codoped Graphene as Catalyst for the Oxygen Reduction Reaction: Insights from Periodic and Cluster DFT Calculations, Journal of Computational Chemistry, 39.11 (2018): 637-647.
  • [35] M. F. Fellah, Direct decarbonylation of furfural to furan: A density functional theory stüdy on Pt-graphene Applied Surface Science 405 (2017) 395–404.
  • [36] C.S. Tautermann and D.C. Clary, Comparative study of cluster- and supercell-approaches for investigating heterogeneous catalysis by electronic structure methods: Tunneling in the reaction N + H - NH on Ru(0001), Phys. Chem. Chem. Phys., 8 (2006) 1437–1444.
  • [37] A.S. Rad, D. Zareyee, Adsorption properties of SO2 and O3 molecules on Pt-decorated graphene: A theoretical study, Vacuum, 130 (2016) 113-118.
  • [38] C. Tabtimsai, W. Rakrai, B. Wanno, Hydrogen adsorption on graphene sheets doped with group 8B transition metal: A DFT investigation, Vacuum, 139 (2017) 101-108.
  • [39] Y. Qin, H.H. Wu, L.A. Zhang, X. Zhou, Y. Bu, W. Zhang, F. Chu, Y. Li, Y. Kong, Q. Zhang, D. Ding, Y. Tao, Y. Li, M. Liu, and X.C. Zeng, Aluminum and Nitrogen Codoped Graphene: Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction, ACS Catalysis, 9 (2019) 610-619.
  • [40] C. Tabtimsai, W. Rakrai, B. Wanno, Hydrogen adsorption on graphene sheets doped with group 8B transition metal: A DFT investigation, Vacuum, 139 (2017) 101-108.
  • [41] M. Malček, L. Bučinský, F. Teixeira, M. Natália, D. S. Cordeiro, Detection of simple inorganic and organic molecules over Cu-decorated circumcoronene: a combined DFT and QTAIM study, Phys. Chem. Chem. Phys., 20 (2018) 16021-16032.
  • [42] J.B. Foresman, Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed., Gaussian Inc., Pittsburgh, PA, (1996) 68–69.
  • [43] R.G. Pearson, Chemical hardness and density functional theory, J. Chem. Sci., 117 (2005) 369–377.
  • [44] R.G. Pearson, The electronic chemical potential and chemical hardness, Journal of Molecular Structure THEOCHEM, 255 (1992) 261–270
  • [45] B. Tüzün, Investi̇gati̇on of pyrazoly derivatives schi̇ff base li̇gands and thei̇r metal complexes used as anti-cancer drug., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 227 (2020) 117663.
  • [46] V. Nagarajan, & R. Chandiramouli, DFT investigation of formaldehyde adsorption characteristics on MgO nanotube. Journal of Inorganic and Organometallic Polymers and Materials, 24.6 (2014) 1038-1047.
  • [47] M. Noei, & A. A. Peyghan, A DFT study on the sensing behavior of a BC 2 N nanotube toward formaldehyde, Journal of molecular modeling, 19.9 (2013) 3843-3850.
  • [48] Y. Kurosaki, & K. Yokoyama, (2002). Photodissociation of acetaldehyde, CH3CHO→ CH4+ CO: direct ab initio dynamics study, The Journal of Physical Chemistry A 106.47 (2002) 11415-11421.
  • [49] R. Gholizadeh, & Y. X. Yu, N2O+ CO reaction over Si-and Se-doped graphenes: an ab initio DFT study, Applied Surface Science 357 (2015) 1187-1195.
  • [50] S. F. Rastegar, A. A. Peyghan, & N. L Hadipour, Response of Si-and Al-doped graphenes toward HCN: a computational study, Applied surface science 265 (2013) 412-417.
  • [51] M. D. Esrafili, N. Saeidi, & P. Nematollahi, Si-doped graphene: A promising metal-free catalyst for oxidation of SO2, Chemical Physics Letters, 649 (2016)37-43.
  • [52] M. D. Esrafili, N. Saeidi, & P. Nematollahi, A DFT study on SO3 capture and activation over Si-or Al-doped graphene, Chemical Physics Letters, 658 (2016) 146-151.
  • [53] Z. Mohsenpour, E. Shakerzadeh, & M. Zare, Quantum chemical description of formaldehyde (HCHO), acetaldehyde (CH3CHO) and propanal (CH3CH2CHO) pollutants adsorption behaviors onto the bowl-shaped B 36 nanosheet, Adsorption, 23.7-8 (2017) 1041-1053.
  • [54] A. Ahmadi, N. L. Hadipour, M. Kamfiroozi, & Z. Bagheri, Theoretical study of aluminum nitride nanotubes for chemical sensing of formaldehyde, Sensors and Actuators B: Chemical 161.1 (2012) 1025-1029.
  • [55] Y. Yong, H. Jiang, X. Lv, J. Cao, The cluster-assembled nanowires based on M12N12 (M = Al and Ga) clusters as potential gas sensors for CO, NO, and NO2 detection, Physical Chemistry Chemical Physics, 18 (2016) 21431-21441.
  • [56] N. L. Hadipour, H. Soleymanabadi, A. A. Peyghan, Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors, The Journal of Physical Chemistry C, 119 (2015) 6398-6404.
  • [57] E.D. Glendering, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1, TCI, University of Wisconsin, Madison.