Biyosensörler: Gıda ve Sağlık Alanında Laktat Biyosensörleri

Biyosensörler, hedef analitin varlığı ya da konsantrasyonunu biyoreseptörün spesifikliği ve konsantrasyonuyla orantılı olarak elde edilen sinyal aracılığıyla belirleyen cihazlardır. Hızlı, hassas, güvenilir, kolay taşınabilir ve ekonomik cihazlar olmaları nedeniyle geleneksel analitik metodlara güçlü bir alternatiftirler.Anaerobik metabolizma yolunun önemli bir metaboliti olan laktatın (laktik asit) varlığı, organizmaların sağlığı ve bazı gıda süreçleri gibi birçok reaksiyon için önemli bir göstergedir. Laktik asit bakterileri tarafından doğal olarak üretilen laktat, fermente gıda ürünleriyle birlikte diğer pek çok yiyecek ve içecekte bulunmaktadır. Bu nedenle; gıda endüstrisinde laktat seviyesi, ürünlerin; tazelik, stabilite ve kalite özelliklerinin belirlenmesinde kullanılmaktadır. Diğer bir açıdan, anaerobik koĢullar altında laktat üretimi; insanlarda yorulmanın ve hidrasyonun bir işaretidir. Kan laktat düzeylerinin hızlı olarak belirlenmesi, septik şok hastalarında çoklu organ yetmezliği ve ölümün izlenmesi açısından iyi bir belirteçtir.Günümüzde, elektrokimyasal biyosensörler; düşük maliyeti, kullanım kolaylığı, mükemmel hassasiyeti ve yüksek seçiciliği gibi özellikleri nedeniyle laktat seviyelerini belirlemek için yaygın olarak kullanılmaktadırlar. Literatürde, laktat biyosensörlerinin çoğu enzimatik amperometrik biyosensörlerdir. Yaklaşık olarak bulunan on beş ticari biyosensörün yanı sıra, laboratuvar koşullarında incelenen çok sayıda biyosensör bulunmaktadır. Çalışmalar, laboratuvar ölçekli yeni biyosensörlerin geliştirilmesi üzerine yoğunlaşırken bunları ticari kullanım amacıyla pazara sunmak önemli bir gerekliliktir.

Biosensors: Lactate Biosensors in Food and Health Field

Biosensors are devices that determine the concentration of the target analyte by means of a signal obtained in proportion to the specificity and the concentration of the bioreceptor. They are a powerful alternative to traditional analytical methods due to the fact that they are fast, precise, reliable, portable and economical devices.Lactate (lactic acid), a key metabolite of the anaerobic metabolism pathway, is an important indicator for lots of reactions, including the health of organisms and some food processes. Lactate which is naturally produced by lactic acid bacteria is found in fermented food products and many other foods and beverages. Thus; lactate level in the food industry is used to determine freshness, stability and quality characteristics of the products. In another aspect, lactate production under anaerobic conditions is a sign of fatigue and hydration. Serial determination of blood lactate levels, is a good predictor to follow the multiple system organ failure and death in septic shock patients.Today, electrochemical-biosensors are used commonly because of their features such as low cost, easy usage, perfect sensitivity and high selectivity to detect lactate levels. In the literature, most of lactate biosensors are enzymatic amperometric biosensors. Besides the approximately fifteen commercial biosensors, there are a great number of biosensors examined in laboratory conditions. While the studies focused on the development of new biosensors in lab-scale, it is a necessity to gain them as commercial usage.

___

  • Aksoy S, Tumturk H, Hasirci N. 1998. Stability of Alfa-Amylase Ġmmobilized on Poly(Methyl Methacrylate-Acrylic Acid) Microspheres. J Biotechnol, 60/1–2:037–046.
  • Alocilja EC, Radke SM. 2003. Market Analysis of Biosensors for Food Safety. Biosens Bioelectron, 18/5–6:841–846.
  • Avramescu A, Noguer T, Avramescu M, Marty JL. 2002. Screen-Printed Biosensors for The Control of Wine Quality Based on Lactate And Acetaldehyde Determination. Anal Chim Acta, 458/1:203–213.
  • Aykut U, Temiz H. 2006. Biyosensörler ve Gıdalarda Kullanımı. Teknolojik Arastırmalar : GTED, 3/3:051–059.
  • Babacan S, Pivarnik P, Letcher S, Rand AG. 2000. Evaluation Of Antibody Ġmmobilization Methods For Piezoelectric Biosensor Application. Biosens Bioelectron, 15/11–12:615–621.
  • Bahadır EB, Sezgintürk MK. 2015. Applications Of Commercial Biosensors in Clinical, Food, Environmental, And Biothreat/Biowarfare Analyses. Anal Biochem, 478:107–120.
  • Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL. 1996. Serial Blood Lactate Levels Can Predict The Development of Multiple Organ Failure Following Septic Shock. Am J Surg, 171/2:221–226.
  • Ballesta-Claver J, Valencia-Mirón MC, Capitán-Vallvey LF. 2008. One-Shot Lactate Chemiluminescent Biosensor. Anal Chim Act, 629/1–2:136–144.
  • Borisov SM, Wolfbeis OS. 2008. Optical Biosensors. Chem Rev, 108/2:423–461.
  • Brena B, González-Pombo P, Batista-Viera F. 2013. Immobilization Of Enzymes: A Literature Survey. Methods Mol Biol, 1051:015–031.
  • Canh TM. 1993. Biosensors. Chapman & Hall, London.
  • Casero E, Alonso C, Petit-Domínguez MD, Vázquez L, Parra-Alfambra AM, Merino P, Álvarez-García S, Andrés A, Suárez E, Pariente F, Lorenzo E. 2014. Lactate Biosensor Based on A Bionanocomposite Composed of Titanium Oxide Nanoparticles, Photocatalytically Reduced Graphene, and Lactate Oxidase. Microchim Acta, 181/1–2:079–087.
  • Chaplin MF, Bucke C. 1990. Enzyme Technology. Cambridge University Press, Cambridge.
  • Choi MMF. 2004. Progress in Enzyme-Based Biosensors Using Optical Transducers. Microchim Acta, 148/3–4:107–132.
  • Clark LC. 1956. Monitor and Control of Blood and Tissue Oxygen Tensions. ASAIO Journal, p:041-048.
  • Clark LC, Lyons C. 1962. Electrode Systems for Contınuous Monıtorıng in Cardiovascular Surgery. Ann N Y Acad Sci, 102/1:029–045.
  • Datta S, Christena LR, Rajaram YRS. 2012. Enzyme Immobilization: an Overview on Techniques and Support Materials. 3 Biotech, 3:001–009.
  • Divies C. 1975. Remarks on Ethanol Oxidation by An “Acetobacter xylinum” Microbial Electrode. Ann Microbiol, 126/2:175-186.
  • Dungchai W, Chailapakul O, Henry CS. 2009. Electrochemical Detection for Paper-Based Microfluidics. Anal Chem, 81/14:5821–5826.
  • Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y. 2008. Sensitive Optical Biosensors for Unlabeled Targets: A Review. Anal Chim Acta, 620/1–2:008–026.
  • Faridnia MH, Palleschi G, Lubrano GJ, Guilbault GG. 1993. Amperometric Biosensor for Determination of Lactate in Sweat. Anal Chim Acta, 278/1:035–040.
  • Faude O, Kindermann W, Meyer T. 2009. Lactate Threshold Concepts: How Valid Are They? Sport Med, 39/6:469–490.
  • Girotti S, Muratori M, Fini F, Ferri EN, Carrea G, Koran M, Rauch P. 2000. Luminescent Enzymatic Flow Sensor for D-and L-Lactate Assay in Beer. Eur Food Res Technol, 210:216–219.
  • Göpel W, Heiduschka P. 1995. Interface Analysis in Biosensor Design. Biosens Bioelectron, 10/9–10:853–883.
  • Guilbault GG, Montalvo JG. 1970. Enzyme Electrode for the Substrate Urea. J Am Chem Soc, 92/8:2533–2538.
  • Hammond JL, Formisano N, Estrela P, Carrara S, Tkac J. 2016. Electrochemical Biosensors and Nanobiosensors. Essays Biochem, 60:069–080.
  • House JL, Anderson EM, Ward WK. 2007. Immobilization Techniques to Avoid Enzyme Loss from Oxidase-Based Biosensors: A One-Year Study. J Diabetes Sci Technol, 1/1:018–027.
  • Hu Y, Wilson GS. 2002. Rapid Changes in Local Extracellular Rat Brain Glucose Observed with An In Vivo Glucose Sensor. J Neurochem, 68/4:1745–1752.
  • Ibupoto ZH, Shah SM, Khun K, Willander M. 2012. Electrochemical L-Lactic Acid Sensor Based on Immobilized ZnO Nanorods with Lactate Oxidase. Sensors, 12/3:2456–2466.
  • Ispas CR, Crivat G, Andreescu S. 2012. Review: Recent Developments in Enzyme-Based Biosensors for Biomedical Analysis. Anal Lett, 45/2–3:168–86.
  • Jia W, Bandodkar AJ, Valdés-Ramírez G, Windmiller JR, Yang Z, Ramírez J, Chan G, Wang J. 2013. Electrochemical Tattoo Biosensors for Real-Time Noninvasive Lactate Monitoring in Human Perspiration. Anal Chem, 85/14:6553–6560.
  • Junhui Z, Hong C, Ruifu Y. 1997. DNA Based Biosensors. Biotechnol Adv, 15/1:043–058.
  • Katrlík J, Pizzariello A, Mastihuba V, Švorc J, Stred’Anský M, Miertuš S. 1999. Biosensors for L-malate and L-lactate Based on Solid Binding Matrix. Anal Chim Acta, 379/1–2:193–200.
  • Koncki R. 2007. Recent Developments in Potentiometric Biosensors for Biomedical Analysis. Anal Chim Acta, 599:007–015. Kriz K, Kraft L, Krook M, Kriz D. 2002. Amperometric Determination of L-Lactate Based on Entrapment of Lactate Oxidase on A Transducer Surface with A Semi-Permeable Membrane Using A SIRE Technology Based Biosensor. Application: Tomato Paste and Baby Food. J Agric Food Chem, 50/12:3419–3424.
  • Kulkarni AS, Joshi DC, Tagalpallewar GP. 2014. Biosensors for Food and Dairy Industry. Asian J Dairy Food Res, 33/4:292-296.
  • Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O'Kennedy R. 2003. Advances in Biosensors for Detection of Pathogens in Food and Water. Enzyme Microb Technol, 32/1:003–013.
  • Li YS, Ju X, Gao XF, Zhao YY, Wu YF. 2008. Immobilization Enzyme Fluorescence Capillary Analysis for Determination of Lactic Acid. Anal Chim Acta, 610/2:249–256.
  • Liedberg B, Nylander C, Lunström I. 1983. Surface Plasmon Resonance for Gas Detection and Biosensing. Sensors and Actuators, 4:299-304.
  • Liu Y, Matharu Z, Howland MC, Revzin A, Simonian AL. 2012. Affinity and Enzyme-Based Biosensors: Recent Advances and Emerging Applications in Cell Analysis and Point-of-Care Testing. Anal Bioanal Chem, 404/4:1181–1196.
  • Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P. 1997. A Bienzyme-Poly-(O-Phenylenediamine)-Modified Carbon Paste Electrode for the Amperometric Detection of L-Lactate. Anal Chim Acta, 346/2:165–174.
  • Luong JHT, Bouvrette P, Male KB. 1997. Developments and Applications of Biosensors in Food Analysis. Trends Biotechnol, 15/9:369–377.
  • Luong JHT, Male KB, Glennon JD. 2008. Biosensor Technology: Technology Push Versus Market Pull. Biotechno Adv, 26/5:492–500.
  • Malhotra BD, Chaubey A. 2003. Biosensors for Clinical Diagnostics Industry. Sensors Actuators B Chem, 91/1–3:117–127.
  • Marcoy M-P, Barcelo D. 1996. Environmental Applications of Analytical Biosensors. Meas Sci Technol, 7:1547–1562.
  • Market Research Report Collections. 2014. Adress: http://www.strategyr.com/pressMCP-3310.asp.
  • Marrazza G. 2014. Piezoelectric Biosensors for Organophosphate and Carbamate Pesticides: A Review. Biosensors, 4/3:301–317.
  • Mazzei F, Azzoni A, Cavalieri B, Botrè F, Botrè C. 1996. A Multi-Enzyme Bioelectrode for The Rapid Determination of Total Lactate Concentration in Tomatoes, Tomato Juice and Tomato Paste. Food Chem, 55/4:413–418.
  • Meena A, Rajendran L. 2010. Mathematical Modeling of Amperometric and Potentiometric Biosensors and System of Non-Linear Equations – Homotopy Perturbation Approach. J Electroanal Chem, 644/1:050–059.
  • Mehrvar M, Bis C, Scharer JM, Young MM, Luong JH. 2000. Fiber-Optic Biosensors. Trends and Advances Anal Sci, 16/7:677–692.
  • Mello LD, Kubota LT. 2002. Review of the Use of Biosensors as Analytical Tools in The Food and Drink Industries. Food Chem, 77/2:237–256.
  • Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA. 2015. An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes. Biotechnol Biotechnol Equip, 29/2:205–220.
  • Monosik R, Stredansky M, Tkac J, Sturdik E. 2012. Application of Enzyme Biosensors in Analysis of Food and Beverages. Food Anal Methods, 5/1:040–053.
  • Mosbach K, Danielsson B. 1974. An Enzyme Thermistor. Biochimica et Biophysica Acta (BBA) - Enzymology, 364/1:140-145.
  • Moser I, Jobst G, Urban GA. 2002. Biosensor Arrays for Simultaneous Measurement of Glucose, Lactate, Glutamate, and Glutamine. Biosens Bioelectron, 17/4:297–302.
  • Murugaboopathi G, Parthasarathy V, Chellaram C, Anand TP, Vinurajkumar S. 2013. Applications of Biosensors in Food Industry. Biosci Biotechnol Res Asia, 10/2:711–714.
  • Nikolaus N, Strehlitz B. 2008. Amperometric Lactate Biosensors and Their Application in (Sports) Medicine, for Life Quality and Wellbeing. Microchim Acta, 160/1–2:015–055.
  • Palleschi G, Mascini M, Bernardi L, Zeppilli P. 1990. Lactate and Glucose Electrochemical Biosensors for The Evaluation of The Aerobic and Anaerobic Threshold in Runners. Med Biol Eng Comput, 28/3:025–028.
  • Pancrazio JJ, Whelan JP, Borkholder DA, Ma W, Stenger DA. 1999. Development and Application of Cell-Based Biosensors. Ann Biomed Eng, 27/6:697–711.
  • Parra A, Casero E, Vázquez L, Pariente F, Lorenzo E. 2006. Design and Characterization of A Lactate Biosensor Based on Immobilized Lactate Oxidase Onto Gold Surfaces. Anal Chim Acta, 555/2:308–315.
  • Pérez S, Sánchez S, Fàbregas E. 2012. Enzymatic Strategies to Construct L-Lactate Biosensors Based on Polysulfone/Carbon Nanotubes Membranes. Electroanalysis, 24/4:967–974.
  • Prodromidis MI, Karayannis MI. 2002. Enzyme Based Amperometric Biosensors for Food Analysis. Electroanalysis, 14/4:241–261.
  • Przybyt M. 2014. Lactate Biosensors for Food Ġndustry. Biotechnol Food Sci, 78/1:071–088.
  • Raba J, Fernández-baldo MA, Pereira S V, Messina G, Bertolino FA, Tosetti S, Ferramola MIS. 2013. Analytical Biosensors for The Pathogenic Microorganisms Determination. Microb Pathog Strateg Combat them Sci Techno Educ, 227–238.
  • Rahman MM, Shiddiky MJA, Rahman MA, Shim YB. 2009. A Lactate Biosensor Based on Lactate Dehydrogenase/Nictotinamide Adenine Dinucleotide (Oxidized Form) Immobilized on A Conducting Polymer/Multiwall Carbon Nanotube Composite Film. Anal Biochem, 384/1:159–165.
  • Ramanathan K, Danielsson B. 2001. Principles and Applications of Thermal Biosensors. Biosens Bioelectron, 16/6:417–423. Rao VK, Suresh S, Sharma MK, Gupta A, Vijayaraghavan R. 2011. Carbon Nanotubes - A Potential Material for Affinity Biosensors. Naraghi M, Carbon Nanotubes - Growth and Applications Chapter7. In Tech.
  • Rassaei L, Olthuis W, Tsujimura S, Sudhölter EJR, Van Den Berg A. 2013. Lactate Biosensors: Current Status and Outlook. Anal Bioanal Chem, 406/1:123–137.
  • Rathee K, Dhull V, Dhull R, Singh S. 2016. Biosensors Based on Electrochemical Lactate Detection: A Comprehensive Review. Biochem Biophys Reports, 5:035–054.
  • Rawson FJ, Purcell WM, Xu J, Pemberton RM, Fielden PR, Biddle N, Hart J. P. 2009. A Microband Lactate Biosensor Fabricated Using A Water-Based Screen-Printed Carbon Ink. Talanta, 77/3:1149–1154.
  • Renneberg R, Lisdat F. 2006. Biosensing for the 21st Century Volume. Advances in Biochemical Engineering/Biotechnology. Springer, Berlin.
  • Reshetilov AN, Iliasov PV, Reshetilova TA. 2010. The Microbial Cell Based Biosensors. Intelligent and Biosensors Chapter 15. In Tech.
  • Robergs RA, Ghiasvand F, Parker D. 2004. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol, 287/3:502–516.
  • Rogers KR. 2000. Principles of Affinity-Based Biosensors. Mol Biotechnol, 14/2:109–130.
  • Romero MR, Ahumada F, Garay F, Baruzzi AM. 2010. Amperometric Biosensor for Direct Blood Lactate Detection. Anal Chem, 82/13:5568–5572.
  • Romero MR, Garay F, Baruzzi AM. 2008. Design and Optimization of A Lactate Amperometric Biosensor Based on Lactate Oxidase Cross-Linked With Polymeric Matrixes. Sensors Actuators B Chem, 131/2:590–595.
  • Rustagi S, Kumar P. 2013. Advances in Bioresearch Biosensor and It’s Application in Food Industry. ABR Adv Biores, 4/42:168–170.
  • Scheller F, Schubert F. 1992. Biosensors. Elsevier Science Publishing Company Inc, New York.
  • Scheper T, Lee K, Kaplan D. 2006. Tissue Engineering I. Advances in Biochemical Engineering/Biotechnology. Springer, Berlin.
  • Serra B, Reviejo AJ, Parrado C, Pingarrón JM. 1999. Graphite-Teflon Composite Bienzyme Electrodes for The Determination of L-Lactate: Application to Food Samples. Biosens Bioelectron, 14/5:505–513.
  • Shah N, Lyandres O, Walsh JT, Glucksberg MR, Van Duyne RP. 2007. Lactate and Sequential Lactate−Glucose Sensing Using Surface-Enhanced Raman Spectroscopy. Anal Chem, 79/18:6927–6932.
  • Shram NF, Netchiporouk LI, Martelet C, Jaffrezic-Renault N, Bonnet C, Cespuglio R. 1998. In Vivo Voltammetric Detection of Rat Brain Lactate with Carbon Fiber Microelectrodes Coated with Lactate Oxidase. Anal Chem, 70/13:2618–2622.
  • Singh M, Verma N, Garg AK, Redhu N. 2008. Urea Biosensors. Sensors Actuators B Chem, 134/1:345–351.
  • Sun C, Wang D, Zhang M, Ni Y, Shen X, Song Y, Geng Z, Xu W, Liu F, Mao C. 2015. Novel L-Lactic Acid Biosensors Based on Conducting Polypyrrole-Block Copolymer Nanoparticles. Analyst, 140/3:797–802.
  • Teo SC, Wong LS. 2014. Whole Cell-Based Biosensors for Environmental Heavy Metals Detection. Annu Res Rev Biol, 4/17:2663–2674.
  • Thakur MS, Ragavan K V. 2013. Biosensors in Food Processing. J Food Sci Technol, 50/4:625–641.
  • Thévenot DR, Toth K, Durst RA, Wilson GS. 2001. Electrochemical Biosensors: Recommended Definitions and Classification. Biosens Bioelectron, 16/1–2:121–131.
  • Tothill IE. 2001. Biosensors Developments and Potential Applications in The Agricultural Diagnosis Sector. Comput Electron Agric, 30/1–3:205–218.
  • Towseef W, Amin QA, Quadir N. 2013. Role of Biosensors in Agro-Food Technology. Asian J Home Sci, 8/1:347–352.
  • Tsai YC, Chen SY, Liaw HW. 2007. Immobilization of Lactate Dehydrogenase within Multiwalled Carbon Nanotube-Chitosan Nanocomposite for Application to Lactate Biosensors. Sensors Actuators B Chem, 125/2:474–481.
  • Turner APF, Isao K, Wilson GS. 1989. Biosensors Fundamentals and Applications. Oxford Unıversıty Press, New York.
  • Uygun M, Aktaş Uygun D, Karagözler AA. 2013. PVA-Aljinat Küreler Üzerine α -Amilaz Enziminin Ġmmobilizasyonu. Tralleis Elektronik Dergisi, 1:045–050.
  • Velasco-Garcia MN. 2009. Optical Biosensors for Probing at The Cellular Level: A Review of Recent Progress and Future Prospects. Semin Cell Dev Biol, 20/1:027–033.
  • Velasco-Garcia MN, Mottram T. 2003. Biosensor Technology Addressing Agricultural Problems. Biosyst En, 84/1:001–012.
  • Viswanathan S, Radecki J. 2008. Amperometric Biosensors for Clinical and Therapeutic Drug Monitoring: A Review. Nanomatrials in Electrochemical Biosensors for Food Analysis - A Review. Polish J Food Nutr Sci, 58/2:157–164.
  • Wang J. 1999. Amperometric Biosensors for Clinical and Therapeutic Drug Monitoring: A Review. J Pharm Biomed Anal, 19/1–2:047–053.
  • Wang J. 2002. Electrochemical Nucleic Acid Biosensors. Anal Chim Acta, 469/1:063–071.
  • Ward WK, House JL, Brick J, Anderson EM, Jansen LB. 2004. A Wire-Based Dual-Analyte Sensor for Glucose and Lactate: In Vitro and In Vivo Evaluation. Diabetes Technol Ther, 6/3:389–401.
  • Weber J, Kumar A, Kumar A, Bhansali S. 2006. Novel Lactate and pH Biosensor for Skin and Sweat Analysis Based on Single Walled Carbon Nanotubes. Sensors Actuators B Chem, 117/1:308–313.
  • Wilson GS, Hu YB. 2000. Enzyme Based Biosensors for In Vivo Measurements. Chem Rev, 100/7:2693–2704.
  • Yang Q, Atanasov P, Wilkins E. 1999. Needle-Type Lactate Biosensor. Biosens Bioelectron, 14/2:203–210.
  • Yin T, Qin W. 2013. Trends in Analytical Chemistry Applications of Nanomaterials in Potentiometric Sensors. Trends Anal Chem, 51:079–086.
  • Ziegler C. 2000. Cell-Based Biosensors. Frensenius J Anal Chem, 366:552–559.