Yüksek Kaliteli Kışlık Yulaf Çeşitlerinin Geliştirilmesi

Milli yulaf ıslah programının amacı, yüksek verimli, hastalıklara, kurağa, soğuğa, yüksek sıcağa dayanıklı ve farklı kullanıma (gıda, tane yem ve kaba yem) uygun yeni çeşitler geliştirmektedir. Bu amaca ulaşmak için 2008 ile 2012 yılları arasında verim, bölge verim ve tescil ön denemesi kademelerinde toplam 284 yulaf genotipi (232 hat ve 52 standart çeşit) yağışa bağımlı şartlarda test edilmiştir. Ardışık yulaf ıslah döngülerinde, yüksek verimli ve kaliteli genotipler seçilmiştir. Kalite özellikleri arasında, protein oranı (PO), yağ oranı (YO) ve hektolitre ağırlığı (HA) seleksiyon kriteri olarak tercih edilmiştir. Kalıtım derecesi (H) ve korelasyon katsayıları test edilen genotiplerin tane verimi (TV) ve kalite özellikleri için hesaplanmıştır. TV için H değeri düşük (0.38) fakat kalite özellikleri için orta (sırasıyla 0.66, 0.68 ve 0.57) düzeyde tahmin edilmiştir. Özelliklerarası korelasyon katsayıları incelendiğinde TV ile YO arasında, TV ile HA arasında ve YO ile HA arasında pozitif, TV ile PO arasında, PO ile YO arasında, PO ile HA arasında ise negatif önemli korelasyon katsayıları belirlenmiştir. İncelenen özellikler arasındaki olumsuz korelasyonlar ve düşük-orta H değerleri milli yulaf ıslah programının en önemli zorlukları olarak karşımıza çıkmaktadır. Bu zorlukları aşmak için ivedilikle yulaf melez bahçesinde yer alan ebeveynlerin (gen havuzu) karakterize edilmesi ve yeni yulaf materyalinin (yurt içinden ve dışından) melez bahçesine katılarak gen havuzunun genişletilmesi önerilebilir. Bu şekilde yüksek verimli ve kaliteli yulaf çeşidi geliştirme olasılığı artırılabilir.

Breeding Winter Oat (Avena sativa L.) Varieties with High Quality

The objective of national oat breeding program is to develop the oat varieties with high yielding, resistant to diseases, drought, cold, and heat stresses and suitable for different usages (food, feed, and forage). To achieve that goal, a total of 284 (232 lines + 52 checks) oat genotypes were tested under rain-fed conditions at the yield, advanced yield, and elite yield trials conducted between 2008 and 2012. During the consecutive oat breeding cycles, genotypes with high yielding and acceptable quality were promoted. Among the quality traits, protein content (PC), oil content (OC), and test weight (TW) were preferred as selection criteria. Heritability (H) and correlation coefficients were estimated for the GY and quality characteristics of the genotypes tested. While the H for GY was low (0.38), Hs for quality traits (PC, OC, and TW) were medium (0.66, 0.68, and 0.57, respectively). As for the correlations between the traits of interest, the statistically significant positive relationships were observed between GY and OC, GY and TW, and OC and TW. In contrast, statistically significant negative associations were measured between GY and PC, PC and OC, and PC and TW. Negative relationships and low-medium H values calculated for the traits studied appear to be the most critical obstacles for national oat breeding program. To tackle these obstacles, the parents, i.e., gene pool, used in the oat crossing block should be characterized as soon as possible and enriched with introducing new exotic germplasm. We believe that by doing so, we can develop high yielding and high-quality oat varieties.
Keywords:

Oat, variety, quality,

___

  • Blum, A. 2011. Plant breeding for water-limited environments. Springer.
  • Branson, C.V. 1987. Recurrent selection for groat-oil content in oats. PhD Thesis. Iowa State University, USA. Cakmak, I., Kalayci, M., Ekiz, H., Braun, H.J., Yilmaz, A. 1999. Zinc deficiency as an actual problem in plant and human nutrition in Turkey: a NATO–Science for Stability Project. Field Crops Research 60: 175-188.
  • Campos, H., Cooper, M., Habben, J.E., Edmeades, G.O., Schussler J.R. 2004. Improving drought tolerance in maize: a view from industry. Field Crops Research, 90: 19-34.
  • Ceccarelli, S., Grando, S., Impiglia A. 1998. Choice of selection strategy in breeding barley for stress environments. Euphytica, 10: 307-318.
  • Doehlert, D.C. 2002. Quality Improvement in Oat. Journal of Crop Production, 5(1-2): 165-189.
  • Doehlert, D.C., Mcmullen, M.S., Jannink J.L. 2006. Oat grain/groat size ratios: a physical basis for test weight. Cereal Chemistry, 83(1): 114-118.
  • Favre, J.R., Albrecht, K.A., Gutierrez, L., Picasso, V.D. 2019. Harvesting Oat Forage at Late Heading Increases Milk Production per Unit of Area. Crop, Forage and Turfgrass Management, 5: 1-8.
  • Frey, K.J. 1975. Heritability of groat protein percentage of hexaploid oats. Crop Science, 15: 277-279.
  • Fufa, H., Baenziger, P.S., Beecher, B.S., Graybosch, R.A., Nelson L.A. 2005. Genetic improvement trends in agronomic performances and end-use quality characteristics among hard red winter wheat cultivars in Nebraska. Euphytica, 144: 187-198.
  • Gorash, A., Armoniene, R., Mitchell Fetch, J., Liatukas, Z., Danyte V. 2017. Aspects in oat breeding: nutrition quality, nakedness and disease resistance, challenges, and perspectives. Annals of Applied Biology, 171: 281-302.
  • Herrmann, M.H., Yu, J., Beuch, S., Weber, W.E. 2014. Quantitative trait loci for quality and agronomic traits in two advanced backcross populations in oat (Avena sativa L.). Plant Breeding, 133: 588-601.
  • Holland, J.B. 1997. Oat improvement In: M.S. Kang (Ed.), Crop improvement for the 21st century, pp. 57-98. Research Signpost, Trivandrum, India.
  • Holland, J.B. 2006. Estimating Genotypic Correlations and Their Standard Errors Using Multivariate Restricted Maximum Likelihood Estimation with SAS Proc MIXED. Crop Science, 46: 642-654.
  • Holland, J.B., Frey, K.J., Hammond E.G. 2001. Correlated responses of fatty acid composition, grain quality and agronomic traits to nine cycles of recurrent selection for increased oil content in oat. Euphytica, 122: 69-79.
  • Holland, J.B.., Munkvold G.P. 2001. Genetic relationships of crown rust resistance, grain yield, test weight, and seed weight in oat. Crop Science, 41:1041-1050.
  • Holland, J.B., Nyquist, W.E., Cervantes-Martinez C.T. 2003. Estimating and interpreting heritability for plant breeding: An update. Plant Breeding Reviews, 22: 9–111.
  • Jones, J.M., Engleson J. 2010. Whole grains: Benefits and challenges. Annual Reviews in Food Science and Technology, 1: 19-40.
  • Long, L., Holland, J.B., Gary, P., Munkvold, G.P., Jannink J.J. 2006. Responses to Selection for Partial Resistance to Crown Rust in Oat. Crop Science, 46: 1260-1265.
  • Kaya Y., Ayranci, R. 2016. Breeding barley for quality in Turkey. Genetika, 48 (1): 173-186.
  • Kourimska, L., Sabolova, M., Horcicka, P., Rys, S., Bozik, M. 2018. Lipid content, fatty acid profile, and nutritional value of new oat cultivars. Journal of Cereal Science, 84: 44-48.
  • Marshall, A., Cowan, S., Edwards, S., Griffiths, I., Howarth, C., Langdon, T., White, E. 2013. Crops that feed the World 9. Oats – a cereal crop for human and livestock feed with industrial applications. Food Sections, 5: 13-33.
  • Martin, M.J.P.M. 2018. Analysis of the genetic and environmental factors affecting grain quality in oats (Avena sativa L.). PhD Thesis. Aberystwyth University, UK.
  • Martinez, M.F., Arelovich, H.M., Wehrhahne L.N. 2010. Grain yield, nutrient content and lipid profile of oat genotypes grown in a semiarid environment. Field Crops Research, 116: 92-100.
  • Mathew, A.K., Abraham, A., Mallapureddy, K.K., Sukumaran R.K. 2018. Lignocellulosic Biorefinery Wastes, or Resources?, In: Waste Biorefinery, Editor(s): Thallada Bhaskar, Ashok Pandey, S. Venkata Mohan, Duu-Jong Lee, Samir Kumar Khanal, Elsevier, p: 267-297.
  • May, W.E., Brandt, S., Hutt‐Taylor, K. 2020. Response of oat grain yield and quality to nitrogen fertilizer and fungicides. Agronomy Journal, 112: 1021-1034.
  • Mazumder, M.A.R., Kumagai, H., Mitani, K. 2004. Diversity of chemical composition, dry matter intake, in vivo digestibility and in situ dry matter degradability of oat hay (Avena sativa). Animal Science Journal, 75: 333-338.
  • Nava, I.C., Duarte, I.T.L., Pacheco, M.T., Federizzi, L.C. 2010. Genetic control of agronomic traits in an oat population of recombinant lines. Crop Breeding and Applied Biotechnology. 10: 305-311.
  • Peltonen-Sainio, P., Peltonen J. 1993. Improving grain yield and quality traits of oats in northern growing conditions. Canadian Journal of Plant Science, 73: 729-735.
  • Peterson, D.M., Wood, D.F. 1997. Composition and structure of high oil oat. Journal of Cereal Science, 26: 121-128. Peterson, D.M., Wesenberg, D.M., Burrup, D.E., Erickson C.A. 2005. Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Science, 45: 1249-1255.
  • Rasane, P., Jha, A., Sabikhi, L., Kumar, A., Unnikrishnan, V.S. 2015. Nutritional advantages of oats and opportunities for its processing as value added foods - a review. Journal of Food Science and Technology, 52 (2): 662–675.
  • Rines, H.W., Molnar, S.J., Tinker, N.A., Philips R.L. 2006. Oats. In: Cereals and Millets. C. Kole (Ed.). Springer. Rocquigny, P.J., Entz, M.H., Gentile, R.M., Duguid S.D. 2004. Yield Physiology of a Semi-dwarf and Tall Oat Cultivar. Crop Science, 44: 2116-2122.
  • Roy, S.C., Shil, P. 2020. Assessment of Genetic Heritability in Rice Breeding Lines Based on Morphological Traits and Caryopsis Ultrastructure. Scientific Reports, 10: 7830.
  • Sadras, V.O., Mahadevan, M., Michelle, M., Williams, S.D., Pamela, H., Zwer, K. 2019. Phenotypic plasticity of grain and hay quality in varieties and advanced lines from the Australian oat breeding program, European Journal of Agronomy, 102: 23-32.
  • Schmitz, E., Nordberg Karlsson, E., Adlercreutz P. 2020. Warming weathers change the chemical composition of oat hulls. Plant Biology Journal, 22-1086-1091.
  • Schipper, H., Frey K.J. 1992. Responses in Agronomic Traits Associated with Three Recurrent Selection Regimes for Groat‐Oil Content in Oat. Plant Breeding, 108: 302-313.
  • Sunilkumar, B.A., Leonova, S., Oste, R., Olsson, O. 2017. Identification and characterization of high protein oat lines from a mutagenized oat population. Journal of Cereal Science, 75: 100-107.
  • Strychar, R. 2011. World oat production, trade, and usage. In: Oats: Chemistry and technology, Sec. Ed. Webster FH and Wood PJ (Ed.). AACC International.
  • Svobodova, L.L., Michel, S., Tammchourova, I.M., Janovska, D., Grausgruber, H. 2019. Diversity and Pre-Breeding Prospects for Local Adaptation in Oat Genetic Resources. Sustainability, 11(24): 6950.
  • Tanhuanpaa, P., Manninen, O., Beattie, A., Scoles, G., Rossnagel, B., Kiviharju E. 2012. An updated doubled haploid oat linkage map and QTL mapping of agronomic and grain quality traits from Canadian field trials. Genome, 55: 289-301.
  • Thro, A.M., Frey K.J. 1984. Relationship between Groat-Oil Content and Grain Yield of Oats (Avena sativa L.). Proceedings of the Iowa Academy of Science, 91(3): 85-86.
  • Walters, M.E., Udenigwe, C.C., Tsopmo, A. 2018. Structural Characterization and Functional Properties of Proteins from Oat Milling Fractions. Journal of American Oil Chemists’ Society, 95: 991-1000.
  • Wiesler, F. 2012. Nutrition and quality. In: Marschner’s mineral nutrition of higher plants. Elsevier. pp: 271-282. Yan, W., Fregeau‐Reid, J., Pageau, D., Martin, R. 2016. Genotype‐by‐Environment Interaction and Trait Associations in Two Genetic Populations of Oat. Crop Science, 56: 1136-1145.
  • Zhou, M., Robards, K., Glennie-Holmes, M., Helliwell, S. 1999. Oat lipids. Journal of American Oil Chemists’ Society, 6: 159–169.
  • Zwer, P. 2017. Oats: grain-quality characteristics and management of quality requirements. In: Cereal grains, Second Edi. Elsevier, pp 235–256.