Tuz Stresi Altındaki Genç Kabak (Cucurbita pepo L. ve C. moschata Poir.) Bitkilerine Uygulanan Prolin’in, Antioksidatif Enzim Aktiviteleri Üzerine Etkisi

Prolin, NaCl stresi altındaki bitkilerde protein bütünlüğünün sağlanması ve enzimlerin aktive edilmesinde görev yapan önemli bir ozmoregülatördür. Stres faktörleri, bitkilerdeki içsel prolin miktarında artışa neden olmaktadır. Dışsal prolin uygulamalarının da tuz stresine toleransta olumlu etki yaptığı bilinmektedir. Burada sunulan çalışmada tuza tolerans seviyeleri önceden belirlenmiş, birisi orta düzeyde tolerant (A-19, C. moschata Poir.), diğeri duyarlı (Ç-1, C. pepo L.) olan iki yerel kabak çeşidine yapılan dışsal prolin uygulamasının, bitkilerdeki antioksidatif enzimlerin seviyesi üzerine etkisi araştırılmıştır. Kabak tohumları vermikulit ortamında çimlendirilmiş ve 2 gerçek yapraklı aşamada hidroponik kültüre aktarılmıştır. Bir hafta sonra bitkiler ‘Kontrol’ ‘100 mM tuz (NaCl)’, ‘100 mM tuz (NaCl) + 5 mM prolin’ ve ‘100 mM tuz (NaCl) + 10 mM prolin’ olmak üzere 4 farklı uygulamaya tabi tutulmuştur. Stresin 10. gününde sürgünün ucundan geriye doğru 2-4. yapraklardan hazırlanan örnekler, süperoksit dismutaz (SOD), katalaz (CAT), askorbat peroksidaz (APX) ve glutayon redüktaz (GR) enzim aktiviteleri bakımından değerlendirilmiştir. Genel olarak prolin uygulamaları, kabak yapraklarının enzim aktivitelerinde kontrole göre artışa neden olmuştur. Bu etki, tuza toleransı daha yüksek olan A-19 genotipinde daha belirgin olmuştur. Dışsal prolin uygulamasının kabak bitkisinde tuza toleransın artmasında olumlu etki yaptığı, bu etkiyi antioksidatif enzim sistemini harekete geçirerek pekiştirdiği izlenimi edinilmiştir.

Effects of Proline Application on Antioxidative Enzymes Activities in the Young Pumpkin Plants (Cucurbita pepo L. and C. moschata Poir.) under Salt Stress

Proline is known to play an important role as an osmolyte which maintains of integrity proteins and activated of antioxidative enzymes in plants subjected to NaCl stress. The stress factors are caused increasing to internal proline amount in plants. Exogenous proline application has been known to positive effect in salt tolerance. The effect of exogenous proline application on antioxidative enzymes activity was investigated in this study, by using the semi-salt-tolerant (A-19, C. moschata Poir.) and the salt-sensitive (Ç-1, C. pepo L.) pumpkin genotypes. Pumpkin seeds were germinated in vermiculite and the seedlings at two true-leaf stage were transferred to hydroponic culture (Hoagland solution). One week after transplanting the plants were subjected to four different applications (Control, 100 mM salt (NaCl), 100 mM salt (NaCl) + 5 mM proline, and 100 mM salt (NaCl) + 10 mM proline). Superoxide dismutase (SOD), catalaz (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) enzymes activity measurements and evaluations have been completed after 10 days of salt application. Antioxidant enzymes activities increased in the salt- and proline-treated plants very effectively compared to control plants. However, this effect was clearer in the A-19 salt tolerance genotype than the C-1 sensitive genotype. Exogenous proline was found useful in protecting the adverse effects of salt stress on plants and this effect may be responded with enzymatic defense systems against salt induced oxidative stress.

___

  • Ahmed, C. B., Rouina, B. B., Sensoy, S., Boukhriss, M., Abdullah, F. B., 2010. Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. Journal of Agricultural and Food Chemistry 58 (7), 4216–4222.
  • Ali, Q., Anwar, F., Ashraf, M., Saari, N., Perveen, R., 20 Ameliorating effects of exogenously applied proline on seed composition, seed oil quality and oil antioxidant activity of maize (Zea mays L.) under drought stress. Int. J. Mol. Sci. 14(1), 818-835. Anonymous, 2012. Türkiye İstatistik Kurumu (TÜİK). http://tuikapp.tuik.gov.tr
  • Asraf, M. ve Foolad, M. R., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59, 206-216.
  • Athar, H., Ashraf, M., Wahid, A., Jamil, A., 2009. Inducing salt tolerance in canola (Brassica napus L.) by exogenous application of glycinebetaine and proline: response at the ınıtıal growth stages. Pak. J. Bot. 41, (3): 1311-1319.
  • Banua, M. N. A., Hoquea, M. A., WatanabeSugimotob, M., Matsuokac, K., Nakamuraa, Y., Shimoishia, Y., Murataa, Y., 2009. Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. Journal of Plant Physiology, 166: 146-156.
  • Bayat, R., Kuşvuran, Ş., Üstün, A. S., Ellialtıoğlu, Ş., 20 Tuza tolerans özelliği farklı iki kabak genotipine ait fidelere yapılan dışsal prolin uygulamalarının etkileri üzerinde araştırmalar. Ulusal Sebze Tarımı Sempozyumu, 12-14 Eylül, Konya, 456-460. Büyük İ., Aydın, S. S., Aras, S., 2012. Bitkilerin stres koşullarında verdiği moleküler cevaplar. Türk Hijyen ve Deneysel Biyoloji Dergisi, 69 (2), 97-110.
  • Campos, M. K. F., Carvalho, K., Souza, F. S., Marur, C. J., Pereira, L. F. P., Filho, J. C. B., Vieira, L. G. E., 2011. Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’citrumelo plants over-accumulating proline. Environmental and Experimental Botany 72, 242–25.
  • Carvalho, K., Freitas de Campo, M. K., Domingues, D. S., Pereira, L. F. P., Vieira, L. G. E., 2013. The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Molecular Biology Reports 40 (4), 3269-3279.
  • Çakmak, I., Marschner, H., 1992. Magnesium defficiency and higlight ıntensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiology 98, 1222-1226.
  • Çakmak, I., Atlı, M., Kaya, R., Evliya, H., Marschner, H., 1994. Association of high light and zinc deficiency in cold-ınduced leaf chlorosis in grapefruit and mandarin trees. Journal of Plant Physiology 146, 355-360.
  • Deivanai, S., Xavier, R., Vinod, V., Timalata, K., Lim, O. F., 2011. Role of exogenous proline in ameliorating salt stress at early stage in two rice cultivars. Journal of Stress Physiology & Biochemistry 7 (4), 157-174.
  • Dionisio-Sese, M. L., Tobita, S., 1998. Antioxidant responses of rice seedling to salinity stress. Journal of Plant Science 135, 1-9.
  • Dixit, V., Pandey, V., Shyam, R., 2001. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L.cv. Azad). Journal of Experimental Botany 52 (358), 1101-1109.
  • Hasanuzzaman, M., Nahar, K., Fujita, M., 2013. Plant response to salt stress and role of exogenous protectants to mitigate saltinduced damages. (in: Ecophysiology and Responses of Plants under Salt Stress, Eds: P.Ahmad et al.), pp: 25-87.
  • Hasegawa, P. M., Bressan, R. A., Handa, A. K., 1986. Cellular mechanism of salinity tolerance. HortScience 21, 1317–1324.
  • Hoagland, D. R., Arnon, D., 1938. The water culture method for growing plants without soil. Journal Circular California Agricultural Experiment Station. No. 347.
  • Hong, Z., Lakkineni, K., Zhnag, Z., Verma, D. P. S. 2000. Removal of feedback inhibition of Δ 1 pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. American Society of Plant Physiologists 122 (4), 1129-1136.
  • Hossain, M. A., Fujita, M., 2010. Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stres. Physiology and Molecular Biology of Plants 16 (1), 19-29.
  • Hoque, M. A., Okuma, E., Banu, M. N. A., Nakamura, Y., Shimoishi, Y., Murata, Y., 200 Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal of Plant Physiology 164, 553-561. Huang, Z., Zhao, L., Chen, D., Liang, M., Liu, Z., Shao, H., Long, X., 2013. Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in jerusalem artichoke plantlets. PloS one 8 (4), 62-85
  • Jaarsma, R., Vries, R. S. M., Boe, A. H., 2013. Effect of salt stress on growth, Na + accumulation and proline metabolism in potato (Solanum tuberosum) cultivars. Plos One 8 (3), 1-10.
  • Joyce, P. A., Aspinall, D., Paley, L. G. 1992. Photosynthesis and the accumulation of proline in response to water deficit. Australian Journal of Plant Physiology 19, 249-2
  • Levitt, J., 1980. Responses of plants to environmental stresses. Vol. I Chilling, freezing, and high temperature stress (London, NewYork, Toronto: Academic Press), 607.
  • Kaya, C., Tuna, A. L., Ashraf, M., Altunlu, H. 2007. Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environmental and Experimental Botany 60, 397-403.
  • Köse, Ş., 2011. Türkiye’de Yetişen Bazı Kabak Türlerinde (Cucurbita sp.) Kuraklık Stresine Tolerans Bakımından Genotipik Varyasyonun Belirlenmesi. Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Van, 100 s.
  • Lehmann, S., Funck, D., Szabados, L., Rentsch, D., 20 Proline metabolism and transport in plant development. Amino Acids 39, 9499
  • Mansour, M. M. F., 1998. Protection of plasma membrane of onion epidermal cells by glysinbetaine and proline aganist NaCl stress. Plant Physiology Biochemistry 36 (10), 7647-772.
  • Matysik, J., Bhalu, B., Mohanty, P., 2002. Molecular mechanism of quenching of reactive oxygen species by proline under stress in plants. Current Science Association, 82: 525–532.
  • Marin, J. A., Andreu, P., Carrasco, A., Arbeloa, A., 20 Determination of proline concentration, an abiotic stress marker, in root exudates of excised root cultures of fruit tree rootstocks under salt stress. Revue des Régions Arides – Numéro spécial – 24 (2/2010) Actes du 3ème Meeting International ‘’Aridoculture et Cultures Oasisennes: Gestion et Valorisation des Ressources et Applications Biotechnologiques dans les Agrosystèmes Arides et Sahariens’’Jerba (Tunisie), 7227
  • Miller, G., Suzuki, N., Yılmaz, S. C., Mittler, R., 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment, 33: 453–467.
  • Misra, N., Gupta, A. K., 2005. Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Sci. 169: 331-3
  • Mittiova, V., Tal, M., Volokita, M., 2002. Salt stress induces up-regulation of N efficent chloroplast antioxidant system in the salttolerant wild tomato species Lycopersicon pennelii but not in the cultivated species. Physiologia Plantarum 115, 393-400.
  • Molazem, D., Qurbanov, E. M., Dunyamaliyev, S. A., 2010. Role of proline, Na and chlorophyll content in salt tolerance of corn (Zea mays L.). American-Eurasian Journal Agriculture Environment Science 9 (3), 319-324.
  • Nawaz, K., Talat, A., Iqra, Hussain, K., Majeed A., 20 Induction of salt tolerance in two cultivars of sorghum (Sorghum bicolor L.) by exogenous application of proline at seedling stage. World Applied Sciences Journal 10 (1), 93Nounjan, N., Theerakulpisut, P., 2012. Effects of exogenous proline and trehalose on physiological responses in rice seedlings during salt-stress and after recovery. Plant Soil Environ. 58 (7), 309–315.
  • Öztekin, G. B., 2009. Aşılı Domates Bitkilerinde Tuz Stresine Karşı Anaçların Etkisi. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, İzmir, 342 s.
  • Sanchez, E., Avila-Quezada, G., Gardea, A. A., Ruiz, J. M., Romero, L. 2007. Biosynthesis of proline in fruits of green bean plants: deficiency versus toxicity of nitrogen. Deficiency versus toxicity of nitrogen. Phyton 76, 143–152.
  • Scandalios, J. G., 1997. Oxidative stress and moleculer biologoy of antioxidant defenses. Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Laboratory Pres. 890 pp.
  • Sevengör, Ş., 2010. Kabakta (Cucurbita pepo L.) Tuz Stresine Toleransın Belirlenmesinde Antioksidant Enzim Aktivitelerinin in vitro ve in vivo Olarak İncelenmesi. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Ankara, 165 s.
  • Sevengör, S., Yasar, F., Kusvuran, S., Ellialtioglu, S., 20 The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. African Journal of Agricultural Research 6 (21), 4920-4924.
  • Shalata, A., Mittova, V., Volokite M., Guy, M., Tal, M., 2001. Response of cultivated tomato and its wild salttolerant relative Lycopersicon pennelli to salt dependent oxidative stress: The root antioxidative system. Physiologia Plantarum 112, 4874
  • Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., Yoshimura, K., 2002. Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany 53 (372), 1305-1319.
  • Singh, T. N., Aspinall, D., Paleg, L. G., Boggess, S. F., 19 Changes in proline concentration in excised plant tissues. Australian Journal Biology Science, 26: 57-63. Szabados, L., Savoure, A., 2009. Proline: a multifunctional amino acid. Trends in Plant Science, 15 (2): 89-97.
  • Talat, A., Nawaz, K., Hussian, K., Bhatti, K. H., 2013. Foliar application of proline for salt tolerance of two wheat (Triticum aestivum L.) cultivars. World Applied Sciences Journal, 22 (4): 547-554.
  • Tıpırdamaz, R., Karakullukçu, Ş., 1993. Prolin ve glisinbetain’in, tuzlu koşullarda kültüre alınmış domates embriyolarının gelişmesi ve bazı içsel madde değişimleri üzerine etkileri. Doğa-Tr. J. of Botany, 17: 57-64.
  • Turan, M. A., Elkarim, A. H. A., Taban, N., Taban, S., 200 Effect of salt stress on growth, stomatal resistance, proline and chlorophyll concentrations on maize plant. African Journal of Agricultural Research, 4 (9): 893 – 8 Yan, Z., Guo, S., Shu, S., Sun, J., Tezuka, T., 2011. Effects of proline on photosynthesis, root reactive oxygen species (ROS) metabolism in two melon cultivars (Cucumis melo L.) under NaCl stress. African Journal of Biotechnology, 10 (80): 18381-18390.