Sex Determination of Japanese Quails (Coturnix Coturnix Japonica) using with Zoometric Measurements

The difficulty of sex determination in most poultry species causes significant financial losses for poultry production as birds cannot be separated at early stages of growth for meat or egg production. Therefore it is important to determine bird’s sex with zoometric parameters. This study was carried out to determine the sex of Japanese quails with zoometric measurements, such as live weight, body length, chest depth and chest width. Eighty-eight male and female Japanese quail chicks were used individually for live weight, chest depth (mm), chest width (mm) and body length (mm) with using digital scaled balance and caliper for every week over a period of six weeks. The weekly collected data were applied to t test for estimating the sex discrimination. The Pearson’s correlation was applied for examining the interrelationship between sex and biometric traits. The results indicated that there was a significant positive correlation between live weight and body length beginning with the 2nd week. Therefore, zoometric measurement of these body traits is suitable for discriminating the sex of Japanese quails in early phase of life.

___

Alkan S, Galiç A, Karabağ K, Balcıoğlu MS. 2008a. Japon Bıldırcınlarında (Coturnix coturnix japonica) Canlı Ağırlık ve Yumurta Verimi Bakımından Seleksiyonun Çıkış ve 6. Hafta Canlı Ağırlıklarına Etkileri. Hayvansal Üretim, 49 (1): 16-19.

Alkan S, Karabağ K, Galiç A, Karslı T. 2008b. Effects of Genotype and Body Weight on Egg Production and Feed Consumption in Japanese Quails (Coturnix Coturnix Japonica) in winter season reared in Antalya Region. Lalahan Hay. Araşt. Enst. Derg., 48 (2): 73 – 79.

Balcıoğlu, MS, Yolcu H, Fırat M, Karabağ K, Şahin E. 2005. Estimation of Genetics Parameters for Liveweights and Liveweight Gain in Japanese Quail. Mediterr. Agric. Sci., 18(1): 35-39.

Brunström B, Axelsson J, Mattsson A, Haldin K. 2009. Effects of Strogens on Sex Differentiation in Japonse Quail and Chicken. Gen Comp. Endocrinol., 163: 97-103.

Cerit H, Altınel A. 1998. Japon Bıldırcınlarının (Coturnixcoturnix japonica) Çeşitli Verim Özelliklerine Ait Genetik ve Fenotipik Parametreler. İstanbul Univ. Vet. Fak. Derg., 24 (1): 111-136.

Cerit H, Avanus K. 2007. Sex Identification in Avian Species Using DNA Typing Methods. Worlds Poult. Sci. J., 63:91-99.

Dechaume-Moncharmont FX, Monceau K, Cezilly F. 2011. Sexing birds using discriminant function analysis: A critical appraisal. The Auk., 128(1): 78-86.

Fuchs DV, Montalti D. 2016. Do morphometric measurements allow sex discrimination in mockingbirds (Mimus sp)? All Res. J. Biol., 3(7): 34-40.

Genç S, Gürcan EK, Önal AR, Erbaş C. 2009. Bıldırcınlarda Cinsiyet Faktörünün Canlı Ağırlık ve Çeşitli Vücut Ölçüleri Üzerine Etkisinin Çok Değişkenli Varyans Analizi Yöntemleri ile Belirlenmesi. 5. Ulusal Zootekni Öğrenci Kongresi, Tokat:54.

Henry L, Biquand V, Craig AJFK Hausberger M, 2015. Sexing adult pale winged starlings using morphometric and discriminant function analysis. PLoS ONE, 10(9): e0135628. doi:10.1371/journal.pone.0135628

Koçak Ç, Özkan S. 2000. Bıldırcın, sülün ve keklik yetiştiriciliği. Ege Üniversitesi Ziraat Fakültesi Yayın No:538.

Minias P. 2015. Sex determination of adult Eurasian coots (Fulica atra) by morphometric measurements. Waterbirds, 38(2): 191-194.

Montalti D, Graña Grilli M, Maragliano RE, Cassini G. 2012. The reliability of morphometric discriminant functions in determining the sex of Chileanflamingos Phoenicopterus chilensis. Curr. Zool., 58: 851-855.

Nazlıgül A, Bardakçıoğlu HE, Türkyılmaz K, Cenan N, Oral D. 2001. The effect of cage density on egg weight, egg production and feed consumption in Japanese quails. İstanbul Univ. Vet. Fak. Derg., 27 (2): 429-438.

Oguntunji AO, Ayorinde KL. 2014. Sexual size dimorphism and sex determination by morphometric measurements in locally adapted Muscovy duck (Cairina moschata) in Nigeria. Acta. Agric. Slov., 104 (1): 15-24. DOI:10.14720/aas.2014.104.1.2

Perkins M, King SM, Travis SE, Linscombe J. 2009. Use of Morphometric Measurements to Differentiate between Species and Sex of King and Clapper Rails. Waterbirds, 32(4): 579–584.

Ruckstuhl, KE, Clutton-Brock TH. 2005. Sexual segregation and the ecology of the two sexes. Published by Cambridge University

Press. Cambridge. ISBN-13: 9780521835220 SPSS: SPSS Professional Statistics 15.0, SPSS Inc, Chicago, 2006.

Tornberg R, Mikkoa H, Rytkönen S. 2016. Morphometric sex determination of great grey owls Strix nebulosi. Ornis. Norv., 39: 6-10.

Tservem Gouss, AS, Yannakopoulos AL. 1986. Carcass Characteristics of Japonese Quail at 42 Days of Age. Br. Poult. Sci., 27(1): 123-127.

Türkmut L, Altan Ö, Oğuz İ, Yalçın S. 1999.Effects of Selection of Four Week Body Weight on Reproductive Performance in Japanese Quail. Turk. J. Vet. Anim. Sci., 23: 229-234.

Volodin IA, Volodina EV, Klenova AV, Matrosova VA. 2015.

Gender identification using acoustic analysis in birds without external sexual dimorphism. Avain Res., 6-20. DOI: 10.1186/s40657-015-0033-y

Yakubu A. 2011. Discriminant analysis of sexual dimorphismin morphological traits of African Muscovy ducks. Arch. Zootec., 60 (232): 1115–1123.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)