Hayvan Islahında Güncel Bir Yaklaşım: CRISPR/Cas9 Genom Modifikasyon Sistemi
Genom modifikasyonları, verimin arttırılmasında ve hastalıklara karşı direncin kazandırılması konusunda önemli avantajlar sağlama potansiyeli içermektedir. Bireyin zaten sahip olduğu bir genin susturulmasını ya da ifade edilmesini sağlayan gen düzenlenmesi yöntemleri (gene editing) çevreyi en az etkileyerek genetik yapının geliştirilmesi konusunda önemli olanaklar sağlamaktadır. Son zamanlarda yeni genetik düzenleme yöntemleri geliştirilmiştir. Bunlar ZFN (Zinc Finger Nuclease)'ler, TALEN (Transcription Activator-like Effector Nuclease)'ler ve CRISPR/Cas nükleaz sistemleridir. CRISPR/Cas sistemi yabancı genetik materyalleri yok etmek için RNA güdümlü nükleazları kullanan bir mikrobiyal immün sistem olup, bu sistemin günümüzde hayvanlarda basit ve etkili bir gen düzenleme mekanizması olarak kullanılabilme potansiyeli değerlendirilmektedir. Bu derlemede CRISPR/Cas9 sistemi ve hayvan ıslahında kullanılabilirliği özetlenmiştir.
A Current Approach in Animal Breeding: CRISPR/Cas9 Genome Modification System
Genome modifications include potential about providing significant advantages on increasing yield performance and developing resistance to diseases. Gene editing methods that provides silencing or expressing of a gene which is an individual already has, have important potential for improving genetic structure without environmental effects. In recent times, new gene editing systems were developed. These are ZFNs (Zinc Finger Nucleases), TALENs (Transcription Activator-like Effector Nucleases) and CRISPR/Cas nuclease systems. CRISPR/Cas system is a microbial immune system that uses RNA guided nucleases for destroying genetic materials and its potential usage like a simple and efficient gene editing mechanism in animals is being evaluated recently. In this review, we summarized CRISPR/Cas9 system and its usability in animal breeding.
___
- Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-1712.
- Cho SW, Kim S, Kim JM, Kim JS. 2013. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31: 230-232.
- Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819-823.
- Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN, Cowan CA, Rader DJ, Musunuru, K. 2014. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circulation Research 115(5): 488-492..
- Eisler MC, Lee MRF. 2014. Steps to sustainable livestock. Nature 507: 32-34
- Garneau, JE, Dupuis M, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468: 67-71.
- Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ. 2010. A rapid and general assay for monitoring endogenous gene modification. Methods Mol. Biol. 649: 247-256.
- Hackett PB, Alvarez MC. 2000. The molecular genetics of transgenic fish. Recent Advances in Marine Biotechnology 4: 77-145.
- Hackett PB, Fahrenkrug SC, Carlson DF. 2014. The Promises and Challenges of Precision Gene Editing in Animals of Agricultural Importance. North American Agricultural Biotechnology Council Report 26: 39-45.
- Hoekstra AY, Wiedmann TO. 2014. Humanity's unsustainable environmental footprint. Science 344: 1114-1117.
- Oliveira TY, Resch W, Jankovic M, Casellas R, Nussenzweig MC, Klein IA. 2012. Translocation capture sequencing: a method for high throughput mapping of chromosomal rearrangements. J. Immunol. Methods 375: 176-181.
- Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nature Protocols 8: 2281-2308.
- Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F. 2012. A transcription activator-like effector toolbox for genome engineering. Nat. Protoc. 7: 171-192.
- Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS. 1985. Insertion of DNA sequences into the human chromosomal globin locus by homologous recombination. Nature 317: 230-234.
- Vince G. 2014. Adventures in the Anthropocene: A Journey to the Heart of the Planet We Made. London: Chatto& Windus.
- Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas- mediated genome engineering. Cell 153: 910-918.
- Wang X, Yu H, Lei A, Zhou J, Zeng W, Zhu H, Dong Z, Niu Y, Shi B, Cai B, Liu J, Huang S, Yan H, Zhao X, Zhou G, He X, Chen X, Yang Y, Jiang Y, Shi L, Tian X, Wang Y, Ma B, Huang X, Qu L, Chen Y. 2015. Generation of gene- modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Scientific Reports 5: 13878, DOI: 10.1038/srep13878.
- Wu S, Ying GX, Wu Q, Capecchi MR. 2008. A protocol for constructing gene targeting vectors: generating knockout mice for the cadherin family and beyond. Nat. Protoc. 3: 1056-1076.
- Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, Crowley DG, Zhang F, Anderson DG, Sharp PA, Jacks T. 2014. CRISPR- mediated direct mutation of cancer genes in the mouse liver. Nature 514(7522): 380-384.
- Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG. 2014. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnol. 32(6): 551-553.
- Young SA, Miyata H, Satouh Y, Kato H, Nozawa K, Isotani A, Aitken RJ, Baker MA, Ikawa M. 2015. CRISPR/Cas9- Mediated Rapid Generation of Multiple Mouse Lines Identified Ccdc63 as Essential for Spermiogenesis. Int. J. Mol. Sci. 16 : 24732-24750.