Ege Bölgesi Zeytinyağlarının Fenolik Bileşenleri

Bu çalışmada, Türkiye’de başlıca zeytin yetiştiriciliği yapan Ege bölgesinin bazı illerinden (Muğla, Aydın, İzmir ve Manisa) 2 hasat dönemi (2007-2008 ve 2008-2009) süresince yerli zeytin çeşitlerinin (Gemlik, Memecik, Ayvalık, Uslu ve Domat) yağı incelenmiştir. Bu yağların toplam fenolik madde ve fenolik bileşimi belirlenmiştir. Yağların toplam fenolik madde içeriği, 2007-2008 hasat dönemi örneklerinde 23,69153,64 mg kafeik asit/kg, 2008-2009 hasat dönemi örneklerinde 16,18-136,22 mg kafeik asit/kg aralığında belirlenmiştir. Tüm zeytinyağı örneklerinde tespit edilen fenolik maddeler; tirozol, oleuropein, 4-hidroksifenil asetik asit, luteolin, vanilik asit, hidroksitirozol, rutin, sinnamik asit, verbaskozit, hidroksi fenilkarboksilik asit, sirinjik asit, 3,4-dihidroksibenzoik asit, kafeik asit, ferulik asit, p-kumarik asit, taksifolin ve apigenindir. Tirozol ve oleuropeinin, 2007-2008 hasat döneminde 1,80-13,39 mg/kg, 1,26-19,50 mg/kg ve 2008-2009 hasat döneminde ise 1,76-11,66 mg/kg, 0,20-13,12 mg/kg aralığında en fazla miktarda değişen bileşenler olduğu saptanmıştı

Phenolic Compounds of Olive Oils from Aegean Region

In this study the domestic monocultivar (Gemlik, Memecik, Ayvalık, Uslu and Domat cv.) virgin olive oil samples obtained from some provinces (Muğla, Aydın, İzmir ve Manisa) of the Aegean region with the main olive growing zones in Turkey during two harvest periods (2007–2008 and 2008-2009) were investigated. The total phenols and phenolic composition of the oils were determined. The total phenol compound content of olive oils were determined to be 23.69-153.64 mg caffeic acid/kg oil for the 2007-2008 harvest period and 16.18-136.22 mg caffeic acid/kg oil for the 2008-2009 harvest period. Tyrosol, oleuropein, 4-hidroksifenil acetic acid, luteolin, vanilic acid, hydroxtyrosol, rutin, cinnamic acid, verbascoside, hidroksifenil carboxylic acid, syringic acid, 3,4dihidroksibenzoic acid, cafeic acid, ferulic acid, p-coumaric acid, taxifolin, apigenin were detected in all the olive oil samples. In the olive oil samples, tyrosol and oleuropein were determined to be the maximum amounts of compounds changing between 1.80-13.39 mg/kg, 1.26-19.50 mg/kg for the 2007-2008 harvest period and 1.76-11.66 mg/kg, 0.2013.12 mg/kg for the 2008-2009 harvest year, respectively.

___

  • Alonso-Salces RM, Héberger K, Holland MV, Moreno-Rojas JM, Mariani C, Bellan G, Reniero F, Guillou C. 2010. Multivariate analysis of NMR fingerprint of the unsaponifiable fraction of virgin olive oils for authentication purposes. Food Chemistry, 118: 956-965.
  • Aparicio R, Harwood J. 2013. Handbook of Olive Oil. Analysis and Properties. 2nd Ed. Springer, New York.
  • Arslan D, Özcan MM. 2011. Phenolic profile and antioxidant activity of olive fruits of the Turkish variety “Sarıulak” from different locations. Grasas Y Aceites, 62 (4): 453-461.
  • Arslan D, Özcan MM. 2014. Changes in Chemical Composition and Olive Oil Quality of Turkish Variety ‘Kilis Yağlık’ with Regard to Origin of Plantation. Global Journal of Agricultural Innovation, Research & Development, 1: 5156.
  • Artajo LS, Romero MP, Motilva MJ. 2006. Transfer of phenolic compounds during olive oil extraction in relation to ripening stage of te fruit. Journal of the Science of Food and Agriculture, 86: 518-527.
  • Bonoli M, Montanucci M, Toschi TG, Lercker G. 2003. Fast separation and determination of tyrosol, hydroxytyrosol and other phenolic compounds in extra-virgin olive oil by capillary zone electrophoresis with ultraviolet-diode array detection. Journal of chromatography A, 1011: 163-172.
  • Boselli E, Lecce GD, Strabbioli R, Pieralisi G, Frega NG. 2009. Are virgin olive oils obtained below 27 C better than those produced at higher temperatures? LWT - Food Science and Technology, 42: 748-757.
  • Boskou D, Blekas G, Tsimidou M. 2006. Olive oil composition. Boskou. Olive oil Chemistry and Technology. 2nd Edition. Champaign, Illinois, USA. AOCS Press. 41-72.
  • Caponio F, Gomes T, Pasqualone A. 2001. Phenolic compounds in virgin olive oils: influence of the degree of olive ripeness on organoleptic characteristics and shelf-life. Eur Food Res Technol. 212: 329–333.
  • Cerretani L, Bendini A, Rotondi A, Mari M, Lercker G, Gallina TT. 2004. Evaluation of the oxidative stability and organoleptic properties of extra-virgin olive oils in relation to olive ripening degree. Progress Nutrition, 6: 50-56.
  • De Torres A, Espínola F, Moya M, Castro E. 2016. Composition of secoiridoid derivatives from Picual virgin olive oil using response surface methodology with regard to malaxation conditions, fruit ripening, and irrigation management. European Food Research and Technology, 242: 1709-1718.
  • Dierkes G, Krieger S, Dü ck R, Bongartz A, Schmitz OJ, Hayen H. 2012. High-performance liquid chromatography–mass spectrometry profiling of phenolic compounds for evaluation of olive oil bitterness and pungency. Journal of agricultural and food chemistry, 60: 7597-7606.
  • Garcia A, Brenes M, Martinez F, Alba J, Garcia P, Garrido A. 2001. Highperformance liquid chromatography evaluation of phenols in virgin olive oil during extraction at laboratory and industrial scale. Journal of the American Oil Chemists’ Society, 78: 625-629.
  • Hbaieb RH, Kotti F, Cortes-Francisco N, Caixach J, Gargouri M, Vichi S. 2016. Ripening and storage conditions of Chétoui and Arbequina olives: Part II. Effect on olive endogenous enzymes and virgin olive oil secoiridoid profile determined by high resolution mass spectrometry. Food chemistry, 210: 631-639.
  • İlyasoğlu H, Özcelik B, Van Hoed V, Verhe R. 2010. Characterization of Aegean olive oils by their minor compounds. Journal of the American Oil Chemists' Society, 87: 627-636.
  • Kalantzakis G, Blekas G, Pepklidou K, Boskou D. 2006. Stability and radical-scavenging activity of heated olive oil and other vegetables oils. Eur. J. Lipid Sci. Tecnologhy, 108: 329-335.
  • Kalua CM, Allen MS, Bedgood DR, Bishop AG, Prenzler PD. 2005. Discrimination of olive oils and fruits into cultivars and maturity stages based on phenolic and volatile compounds. Journal of agricultural and food chemistry, 53: 8054-8062.
  • Kalua CM, Bedgood DR, Bishop AG, Prenzler PD. 2006. Changes in volatile and phenolic compounds with malaxation time and temperature during virgin olive oil production. Journal of agricultural and food chemistry, 54: 7641-7651.
  • Kelebek H, Selli S, Kola O. 2017. Quantitative determination of phenolic compounds using LC-DAD-ESI-MS/MS in cv. Ayvalik olive oils as affected by harvest time. Food Measure 11:226–235.
  • Konuşkan DB, Altan A. 2008. Zeytin ve Zeytinyağında Doğal Olarak Bulunan Biyoaktif Bileşikler ve Fizyolojik Etkileri. Gıda, 33(6):297-302.
  • Konuşkan DB, Canbaş A. 2014. Effects of Variety and Extraction Methods on Phenolic Compounds and Chemical Composition of Olive Oils. Revista de Chimie (Bucharest), 65(7): 788-791.
  • Murkovic M, Lechner S, Pietzka A, Bratacos M, Katzogiannos E. 2004. Analysis of minor components in olive oil. Journal of Biochemical and Biophysical Methods, 61: 155-160.
  • Ocakoğlu D, Tokatli F, Ozen B, Korel F. 2009. Distribution of simple phenols, phenolic acids and flavonoids in Turkish monovarietal extra virgin olive oils for two harvest years. Food Chemistry, 113: 401-410.
  • Owen RW, Giacosa A., Hull WE, Haubner R, Würtele G, Spiegelhalder B, Bartsch H. 2000. Olive-oil consumption and health: the possible role of antioxidants. The lancet oncology, 1: 107-112.
  • Öğütçü M, Yilmaz E. 2009. Comparison of the virgin olive oils produced in different regions of Turkey. Journal of Sensory Studies, 24: 332-353.
  • Peres F, Martins LL, Mourato M, Vitorino C, Antunes P, Ferreira-Dias S. 2016. Phenolic compounds of ‘Galega Vulgar’and ‘Cobrançosa’olive oils along early ripening stages. Food chemistry, 211: 51-58.
  • Pirisi FM, Cabras P, Cao CF, Migliorini M, Muggelli M. 2000. Phenolic compounds in virgin olive oil. 2. Reappraisal of the extraction, HPLC separation, and quantification procedures. Journal of Agricultural and Food Chemistry, 48: 1191-1196.
  • Servili M, Esposto S, Fabiani R, Urbani S, Taticchi A, Mariucci F, Selvaggini R, Montedoro GF. 2009. Phenolic compounds in olive oil: antioxidant, health and organoleptic activities according to their chemical structure. Inflammopharmacology, 17: 76-84.
  • Shibasaki H. 2005. Influence of fruit ripening on chemical properties of ‘Mission’ variety olive oil in Japan. Food Science and Technology Research, 11(1): 9-12
  • Tripoli E, Giammanco M, Tabacchi G, Di Majo D, Giammanco S, La Guardia M. 2005. The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutrition research reviews, 18: 98-112.
  • Vinha AF, Ferreres F, Silva BM, Valentao P, Gonçalves A, Pereira JA, Oliveria MB, Seabre RM, Andrade PB 2005. Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food chemistry, 89: 561-568.
  • Visioli F, Galli C. 1998. Olive oil phenols and their potential effects on human health. Journal of Agricultural and Food Chemistry, 46: 4292-4296.
  • Vinha AF, Ferreres F, Silva BM, Valentao P, Gonçalves A, Pereira JA, Oliveria MB, Seabre RM, Andrade PB. 2005. Phenolic Profiles of Portuguese Olive Fruits (Olea europoea L.): Influence of Cultivar and Geographical Origin. Food Chemistry, 89 (4): 561–568.
  • Yorulmaz A, Erinç H, Tekin A. 2013. Changes in Olive and Olive Oil Characteristics During Maturation. J Am Oil Chem Soc, 90: 647–658.
  • Yorulmaz A, Erinç H, Tatlı A, Tekin A. 2017. Güneydoğu Anadolu Bölgesi’nde Yetiştirilen Gemlik Çeşidi Zeytinlerde Verticillium Solgunluğunun Zeytinyağı Kalite Parametreleri ve Fenolik Bileşenlere Etkisi. GIDA, 42 (2): 197-203.