Determination of Antifungal Effects of Some Berry Fruits Ethanol Extracts by Disc Diffusion Method

There are many natural growth area in Turkey and utilizability is increasingly in different areas. Berry fruits involve several species such as grape (Vitis spp.), currant (Ribes spp.), rosehip (Rosa spp.), strawberry (Fragaria spp.), raspberry (Rubus spp.), pomegranate (Punica spp.), blackberry (Rubus spp.), bilberry (Vaccinium spp.), mulberry (Morus spp.) and cornelian cherry (Cornus spp.). Berries are soft fruits that turn from red to blue or black. They contain a good source of vitamins and minerals, and they have various phytochemical compositions that relevant to consumer health. Different varieties of berries contain quite variable concentrations of ascorbic acid, folic acid, anthocyanin, flavonol, ellagitannins and many diversity of hydroxybenzoic acid. Berries have antioxidant, antimicrobial, antifungal and anticarcinogenic properties due to rich content of phytochemical. In this study, Antifungal effect of ethanol extracts obtained from strawberry, raspberry, pomegranate, blackberry, bilberry, mulberry and cornelian cherry against 7 different subspecies of Penicillium, 6 different subspecies of Aspergillus and Mucor racemosus, Botrytis cinerea, Geotrichum candidum, Cladosporium claudosporioides, Rhizopus nigricans species were determined by using disk diffusion method. As a result of the research; It was determined that 9 different samples had antifungal effect on 18 different mold species at various rate. The highest antifungal effect was observed with 24.65 milimeter zone diameter against Mucor racemosus in pomegranate peel extract. This value was followed by blackberry extract against Penicillium glaucum and Penicillium chrysogenum with 20.54 and 20.03 milimeter zone diameter, respectively. It was concluded that the lowest antifungal effect on mold species apart from Aspergillus flavus in blue bilberry extract.

Bazı Üzümsü Meyvelerin Etanol Ekstraktlarının Antifungal Etkisinin Disk Difüzyon Metoduyla Belirlenmesi

Türkiye’de birçok doğal yetişme alanı bulunmakta olup, farklı alanlarda kullanılabilme özelliği giderek artmaktadır. Üzüm (Vitis spp.), frenk üzümü (Ribes spp.), kuşburnu (Rosa spp.), çilek (Fragaria spp.), ahududu (Rubus spp.), nar (Punica spp.), böğürtlen (Rubus spp.), yaban mersini (Vaccinium spp.), dut(Morus spp.) ve kızılcık (Cornus spp.) gibi üzümsü meyvelerin birçok türü bulunmaktadır. Üzümsü meyveler, rengi kırmızıdan maviye veya siyaha dönen yumuşak meyvelerdir. Bu meyveler iyi bir vitamin ve mineral kaynağı olup tüketici sağlığı ile ilgili çeşitli fitokimyasal bileşimlere sahiptir. Farklı üzümsü meyve çeşitleri oldukça değişken konsantrasyonlarda askorbik asit, folik asit, antosiyanin, flavanol, ellagitanen ve birçok hidroksibenzoik asit türevlerini içermektedir. Zengin fitokimyasal içeriğinden dolayı üzümsü meyveler antioksidan, antimikrobiyal, antifungal ve antikanserojen özelliklere sahiptir. Bu çalışmada, çilek, ahududu, nar, böğürtlen, yaban mersini, karadut ve kızılcık meyvelerinden elde edilen etanol ekstraktlarının 7 farklı Penicillium, 6 farklı Aspergillus türleri ile Mucor racemosus, Botrytis cinerea, Geotrichum candidum, Cladosporium claudosporioides, Rhizopus nigricans küflerine karşı antifungal etkisi disk difüzyon yöntemi ile belirlenmiştir. Araştırma sonucunda; 9 farklı örneğin 18 farklı küf türü üzerinde değişik oranlarda antifungal etkisinin olduğu tespit edilmiştir. En yüksek antifungal etki 24,65 milimetre zon çapı ile Mucor racemosus’a karşı nar kabuğu ekstraktında gözlenmiştir. Bu değeri 20,54 ve 20,03 milimetre zon çapları ile sırasıyla Penicillium glaucum ve Penicillium chrysogenum’a karşı böğürtlen ekstraktı takip etmiştir. Aspergillus flavus türü hariç diğer küf türleri üzerinde en düşük antifungal etkinin ise mavi yaban mersini ekstraktında olduğu sonucuna varılmıştır

___

Akbulut M, Yazıcı K, Şavşatlı Y. 2016. Üzümsü Meyveler Raporu. DOKA Yayınları Araştırma Raporları Serisi. 1: 7-8.

Anonim. 2018. Eucast, European Commitee on Antimicrobial Susceptibility Testing. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.0_Breakpoint_Tables.pdf .

Barron D, Ibrahim RK. 1996. Isoprenylated flavonoids-a survey.Phytochemistry, 43(5): 921-982. https://doi.org/10.1016/S0031-9422(96)00344-5

Bauer A, Perry DM, Kirby MM. 1959. Single disc antibiotic sensitivity testing of Staphylococci. A.M.A. Arch. Intern. Med., 104: 208–216.

Bauer AW, Kirby MM, Sherris JC, Turck M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 36: 493-496.

Benvenuti S, Pellati F, Melegari M, Bertelli D. 2004.. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J. Food Sci.,69: 164–169. https://doi.org/10.1111/j.1365-2621.2004.tb13352.x

Çam T, Yıldırım HK. 2018. Üzümsü meyvelerdeki fenolik bileşiklerin fermantasyon ile değişimi. Akademik Gıda, 16(1):101-108. 10.24323/akademik-gida.417902

Çam T. 2018. Üzümsü meyvelerdeki bileşiklerin laktik asit fermantasyonu ile değişimi. Yüksek lisans tezi. Ege Üniversitesi, Gıda Mühendisliği Anabilim Dalı, İzmir.

Četojević-Simin D, Ranitović AS, Cvetković DD, Markov SL,Vinčić MN, Djilas SM. 2017. Bioactivity of Blackberry (Rubus fruticocus L.) Pomace: Polyphenol Content, Radicalscavenging, Antimicrobial and Antitumor Activity. ACPTEFF, 48: 63-76. https://doi.org/10.2298/ APT1748063C

Ceylan Ş, Saral Ö, Özcan M, Harşıt B. 2017. Yaban mersininin (Vaccinium myrtillus L.) farklı çözücü ekstraktlarındaki antioksidan ve antimikrobiyal aktivitelerinin belirlenmesi.

ACU J. For. Fac., 18(1): 21-27. 10.17474/artvinofd.271088 CLSI. 2009. Performance standards for antimicrobial susceptibility testing, nineteenth informational supplement. Approved Standard M100-S19. Clinical Laboratory Standards Institute, Wayne, PA.

Elsherbiny EA, Amin BH, Baka ZA. 2016. Efficiency of pomegranate (Punica granatum L.) peels extract as a high potential natural tool towards Fusarium dry rot on potato tubers. Postharvest Biol. Technol., 111: 256–263. http://dx.doi.org/10.1016/j.postharvbio.2015.09.019

Francesca Giampieri F, Alvarez-Suarez J, Battino M. 2014. Strawberry and Human Health: Effects beyond Antioxidant Activity. J. Agric. Food Chem., https://doi.org/10.1021 /jf405455n

Ismail T, Sestili P, Akhtar S. 2012. Pomegranate peel and fruit extracts: A review of potential anti-inflammatory and antiinfective effects. J. Ethnopharmacol, 143: 397–405. https://doi.org/10.1016/j.jep.2012.07.004

Krisch J, Ördögh L, Galgóczy L, Papp T, Vágvölgyi C. 2009. Anticandidal effect of berry juices and extracts from Ribes species Cent. Eur. J. Biol., 4(1): 86–89. 10.2478/s11535-008-0056-z

Krstić TP, Suvajdžić LĐ, Stojanović SZ, Velhner MJ, Milanov DS, Bojić GM, Ilić NM. 2014. Different antimicrobial effects of raspberry depending on the method of active components isolation. Food Feed Res., 41(2): 125-130. 10.5937/FFR1402125K

Krzyściak P , Krośniak M , Gąstoł M, Ochońska D, Krzyściak W. 2011. Antimicrobial activity of Cornelian cherry (Cornus mas L.). Post Fitoter., 4: 227-231.

Li Y, Guo C, Yang J, Wei J, Xu J, Cheng S. 2006. Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem., 96(2): 254–260. DOI:https://doi.org/10.1016/j.foodchem. 2005.02.033

Malviya S, Arvind, Jha A, Hettiarachchy N. 2014. Antioxidant and antibacterial potential of pomegranate peel extracts J. Food Sci. Technol., 51(12): 4132–4137. DOI 10.1007/s13197-013-0956-4

Mansour E, Ben Khaled A, Lachiheb B, Abid M, Bachar K, Ferchichi A., 2013. Phenolic compounds, antioxidant, and antibacterial activities of peel extract from Tunisian pomegranate. J. Agric. Sci. Technol. 15: 1393–1403.

Orzuaa MC, Mussattob SI, Contreras-Esquivela JC, Rodrigueza R, Garzaa H, Teixeirab JA, Aguilara CN. 2009. Exploitation of agro industrial wastes as immobilization carrier for solidstate fermentation. Ind. Crop Prod., 30(1): 24–27.https://doi.org/10.1016/j.indcrop.2009.02.001

Rongai D, Pulcini P, Lernia GD, Nota P, Preka P, Milano F. 2019. Punicalagin Content and Antifungal Activity of Different Pomegranate (Punica granatum L.) Genotypes. Horticulturae, 5(3): 52. https://doi.org/10.3390 /horticulturae5030052

Rongai D, Sabatini N, Pulcini P, Marco D, Storchi L, Marrone A. 2018. Effect of pomegranate peel extract on shelf life of strawberries: computational chemistry approaches to assess antifungal mechanisms involved. J. Food Sci .Technol.,55(7): 2702–2711 DOI: https://doi.org/10.1007/s13197-018-3192-0

Sarkhosh A, Zamani Z, Fatahi R, Ghorbani H, Hadian J. 2007. A review on medicinal characteristics of pomegranate (Punica granatum L.). J. Med. Plants, 6 (22): 13–24.

Schuster B, Herrmann K. 1985. Hydroxybenzoic and hydroxycinnamic acid derivatives in soft fruits. Phytochemistry, 24(11): 2761-2764. https://doi.org/10.1016 /S0031-9422(00)80722-0

Seeram NP. 2008. Berry Fruits: Compositional Elements, Biochemical Activities, and the Impact of Their Intake on Human Health, Performance, and Disease. J. Agric. Food Chem., 56: 627–629. DOI: https://doi.org/10.1021/jf071988k

Sharayei P, Azarpazhooh E, Ramaswamy HS. 2019. Effect of microencapsulation on antioxidant and antifungal properties of aqueous extract of pomegranate peel. J. Food Sci. Technol. https://doi.org/10.1007/s13197-019-04105-w

Shen X, Sun X, Xie Q, Liu H, Zhao Y, Pan Y, Hwang C, Wu C.H. V. 2014. Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts against the growth of Listeria monocytogenes and Salmonella Enteritidis. Food Control, 35(1): 159-165. 10.1016/j.foodcont.2013.06.040

Simonetti G, Brasili E, D'Auria FD, Corpolongo S, Ferrari F, Pasqua G. 2017. Prenylated flavonoids and total extracts from Morus nigra L. root bark inhibit in vitro growth of plant pathogenic fungi. Plant Biosyst., 151: 783–787. https://doi.org/10.1080/11263504.2017.1320313

Tajkarimi MM, Ibrahim SA, Cliver DO. 2010. Antimicrobial herb and spice compounds in food. Food Control, 21: 1199-1218.

Tehranifar A, Selehvarzi Y, Kharrazi M, Bakhshb VJ. 2011.High potential of agro-industrial by-products of pomegranate (Punica granatum L.) as the powerful antifungal and antioxidant substances. Ind. Crops Prod., 34: 1523–1527. 10.1016/j.indcrop.2011.05.007

Wen P, Hu TG, Linhardt RJ, Liao ST, Wu H, Zou YX. 2019. Mulberry: A review of bioactive compounds and advanced processing technology. Food Sci. Technol., 83: 138-158. https://doi.org/10.1016/j.tifs.2018.11.017

Wojdy³o A, Oszmiañski J, Czemerys R. 2007. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem., 105: 940-949. https:// doi.org/10.1016/ j.foodchem.2007.04.038

Yanishlieva NV, Marinova E, Pokorny J. 2006. Natural antioxidants from herbs and spices. Euro Fed Lipid, 108: 776-793. https://doi.org/10.1002/ejlt.200600127

Zhao Y. (Ed.) 2007. Berry Fruit Value-Added Products for Health Promotion. USA. CRC Press. 444. 978-0-8493-5802-9
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)