Bitki Sekonder Maddelerinin Herbivor Böceklere Etkileri

Bitkiler, herbivorlara karşı etkili olan mekanik ve kimyasal savunma stratejileri geliştirmiştir. Bitkiler, organizmaların üremelerine, gelişmelerine, büyümelerine doğrudan karışmayan fakat türlerin hayatta kalmalarını, gelişmelerini, davranışlarını etkileyen ve sekonder metabolit (allelokimyasal) olarak bilinen kimyasalları içermektedir. Bu bileşikler genellikle ekolojik görevleri üstlenirler ve bitkiler türler arası rekabette hastalıklara, parazitlere ve avcılara karşı bu bileşikleri kullanılırlar. Herbivor böceklerin beslenmesiyle elde edilen gözlemlerden bu bileşiklerin herbivorlara caydırıcı olarak görev yaptıkları ya da onlara karşı toksik oldukları bilinmektedir. Herbivor böcekler için beslenme en temel ve en önemli davranışlardan biridir. Herbivorların konak bitki tercihi kısmen gıdalara dayansa bile geniş ölçüde bitkilerin sekonder kimyasına bağlıdır. Herbivor böceklere bitki sekonder maddelerinin etkileri olumlu ya da olumsuz olabilmektedir

The Effects of Plant Secondary Compounds on Herbivorous Insects

Plants have developed mechanical and chemical defense strategies that are effective against herbivores. Plants contain chemicals that are known as secondary metabolites (allelochemical) and these chemicals do not directly involve in organisms’ reproduction and growth, on the other hand, they affect survival, growth and behavior of species. These compounds usually take ecological tasks and plants use these compounds against diseases, parasites, and predators for interspecies competition. It is known through the observations on feeding of herbivorous insects that these compounds act as deterrent chemicals or they are toxic against them. Feeding is one of the most fundamental and the most important behaviors for herbivorous insects. Even though host plant preference of herbivores is partially depend on nutrients, this behavior greatly depends on secondary chemistry of plants. Effects of secondary compounds on herbivorous insects can be positive or negative.

___

  • Agrawal AA. 1999. Induced responses to herbivory in wild radish: Effects on several herbivores and plant fitness. Ecology, 80: 1713-1723.
  • Baker WL. 1972. Eastern Forest Insects. USDA miscellaneous publication. No: 1175, Washington, DC.
  • Barbehenn RV, Bumgarner SL, Roosen EF, Martin MM. 2001. Antioxidant defenses in caterpillars: Role of the ascorbaterecycling system in the midgut lumen. Journal of Insect Physiology, 47: 349-357.
  • Barbehenn RV, Martin MM. 1992. The protective role of the peritrophic membrane in the tannin-tolerant larvae of Orgyia leucostigma (Lepidoptera). Journal of Insect Physiology, 12: 973-980.
  • Berenbaum M. 1980. Adaptive significance of midgut pH in larval Lepidoptera. American Naturalist, 115: 138-146.
  • Berenbaum MR, Zangerl AR. 1998. Chemical phenotype matching between a plant and its insect herbivore. Proceedings of the National Academy of Sciences of the United States of America, 95: 13743-13748.
  • Bernays EA. 1998. Evolution of feeding behaviour in insect herbivores. Bioscience, 48: 35-45.
  • Bernays EA, Bright KL. 2001. Food choice causes interrupted feeding in the generalist grasshopper Schistocerca americana: further evidence for inefficient decision-making. Journal of Insect Physiology, 47: 63-71.
  • Bernays EA, Chamberlain D. 1980. A study of tolerance of ingested tannin in Schistocerca gregaria. Journal of Insect Physiology, 26: 415-420.
  • Bernays EA, Cooper-Driver G, Bilgener M. 1989. Herbivores and plant tannins. Advances in Ecological Research, 19: 263-275.
  • Bhonwong A, Stout MJ, Attajarusit J, Tantasawat P. 2009. Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). Journal of Chemical Ecology, 35: 28- 38.
  • Bowers MD. 1984. Iridoid glycosides and host-plant specificity in larvae of the buckeye butterfly, Junonia coenia (Nymphalidae). Journal of Chemical Ecology, 10: 1567- 1577.
  • Bowers MD. 1991. Iridoid glycosides. In: (Rosenthal GA, Berenbaum MR), Herbivores: Their interactions with secondary plant metabolites. Academic Press, San Diego. p. 297-325.
  • Bowers MD, Puttick GM. 1988. Response of generalist and specialist insects to qualitative allelochemical variation. Journal of Chemical Ecology, 14: 319-334.
  • Carter M, Feeny P. 1999. Host-Plant Chemistry Influences ovipisition choice of the spicebush Swallowtail Butterfly. Journal of Chemical Ecology, 25(9): 1999-2009.
  • Cooper SM, Owen-Smith N. 1986. Effects of plant spinescence on large mammalian herbivores. Oecologia, 68: 446-455.
  • Crawley MJ. 1989. Insect herbivores and plant population dynamics. Annual Review of Entomology, 34: 531-564.
  • Dicke M, Van Baarlen P, Wessels R, Dijkman H. 1993. Herbivory induces systemic production of plant volatiles that attract predators of the herbivore: extraction of endogenous elicitor. Journal of Chemical Ecology, 19: 581- 600.
  • Dicke M, Vet LEM. 1999. Plant-carnivore interactions: Evolutionary and ecological consequences for plant, herbivore and carnivore. In: (Olff H, Brown VK, Drent RH), Herbivores: Between plants and predators. Blackwell Science, Oxford. p. 483-520.
  • Duffey SS, Stout MJ. 1996. Antinutritive and toxic components of plant defense against insects. Archives of Insect Biochemistry and Physiology, 32: 3-37.
  • Ehrlich PR, Raven PH. 1964. Butterflies and plants: a study in coevolution. Evolution, 18: 586-608.
  • Eibler E, Tanner U, Mayer KK, Wiegrebe W, Reger H. 1995. HPLC-analysis of alkaloids from Cynanchum vincetoxicum. Acta Pharmaceutica (Zagreb), 45: 487-493.
  • Farmer EE. 2001. Surface-to-air signals. Nature, 411: 854-856.
  • Feeny P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology, 51: 565-581.
  • Feeny P. 1991. Chemical constraints on the evolution of swallowtail butterflies. In: (Price PW, Lewinshon TM, Fernandes GW, Benson WE), Plant-animal interactions. p. 315-340.
  • Fernandes GW, Negreiros D. 2001. The occurrence and effectiveness of hypersensitive reaction against galling herbivores across host taxa. Ecological Entomology, 26: 46-55.
  • Firidin B. 2003. Besin kalitesinin Hyphantria cunea (Lepidoptera:Arctiidae)’nin üreme ve gelişmesine etkisi. Ondokuzmayıs Üniversitesi Fen Bilimleri Enstitüsü. Yüksek Lisans Tezi.
  • Fraenkel GS. 1959. The raison d'être of secondary plant substances. The odd chemicals arose as a means of protecting plants from insects and now guide insects to food. Science, 129: 1466-1470.
  • Fox LR. 1981. Defense and dynamics in plant-herbivore systems. American Zoologist, 21: 853-864.
  • Förare J. 1995. The biology of the noctuid moth Abrostola asclepiadis Schiff. (Lepidoptera, Noctuidae) in Sweden. Ent. Tidskriften, 116: 179-186.
  • Förare J, Engqvist L. 1996. Suboptimal patch and plant choice by an ovipositing monophagous moth-an insurance against bad weather? Oikos, 77: 301-308.
  • Harvey JA, Van Nouhuys S, Biere A. 2005. Effects of quantitative variation in allelochemicals in Plantago lanceolata on development of a generalist and a specialist herbivore and their endoparasitoids. Journal of Chemical Ecology, 31: 287-302.
  • Horvitz CC, Schemske DW. 2002. Effects of plant size, leaf herbivory, local competition and fruit production on survival, growth and future reproduction of a neotropical herb. Journal of Ecology, 90: 279-290.
  • Johnson MTJ, Smith SD, Rausher MD. 2009. Plant sex and the evolution of plant defenses against herbivores. Proceedings of the National Academy of Sciences of the United States of America, 106: 18079-18084.
  • Karowe DN. 1989. Differential effect of tannic acid on two treefeeding Lepidoptera: Implications for theories of plantherbivore chemistry. Oecologia, 80: 507-512.
  • Leimu R, Lehtilä K. 2006. Effects of two types of herbivores on the population dynamics of a perennial herb. Basic and Applied Ecology, 7: 224-235.
  • Malcolm SB. 1992. Prey defence and predator foraging. In: (Crawley MJ), Natural enemies: The population biology of predators, parasites and diseases. Blackwell Scientific, Oxford, UK. p. 458-475.
  • Martel JW, Malcolm SB. 2004. Density-dependent reduction and induction of milkweed cardenolides by a sucking insect herbivore. Journal of Chemical Ecology, 30: 545-561.
  • Nagy F, Schäfer E. 2002. Light perception and signal transduction. In: (Scheel D, Wasternack C), Plant signal transduction. Oxford University Press, Oxford. p. 6-19.
  • Nicol RW, Arnason JT, Helson B, Abou-Zaıd MM. 1997. Effect of host and nonhost trees on the growth and development of the forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae). Canadian Entomologist, 129: 991-999.
  • Nieminen M, Suomi J, Van Nouhuys S, Sauri P, Riekkola M. 2003. Effect of iridoid glycoside content on oviposition host plant choice and parasitism in a specialist herbivore. Journal of Chemical Ecology, 29: 823-844.
  • Panzuto M, Lorenzetti F, Mauffette Y, Albert PJ. 2001. Perception of aspen and sun/shade sugar maple leaf soluble extracts by larvae of Malacosoma disstria. Journal of Chemical Ecology, 27: 1963-1978.
  • Paré PW, Tumlinson JH. 1997. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiology, 114: 1161-1167.
  • Rausher MD, Iwao K, Simms EL, Ohsaki N, Hall D. 1993. Induced resistance in Ipomoea purpurea. Ecology, 74: 20- 29.
  • Redfern M. 1997. Plant galls: an intimate association between animals and plants. Antenna, 21: 55-63.
  • Rhoades DF. 1979. Evolution of plant chemical defense against herbivores. In: (Rosenthal GA, Janzen DH), Herbivores: Their interaction with secondary plant metabolites. Academic Press, New York, USA.
  • Sabelis MW, Van Baalen M, Bakker FM, Bruin J, Drukker B, Egas M. 1999. The evolution of direct and indirect plant defence against herbivorous arthropods. In: (Olff H, Brown VK, Drent RH), Herbivores: Between plants and predators. Blackwell, Oxford. p. 109-166.
  • Scheel D, Wasternack C. 2002. Signal transduction in plants: cross-talk with the environment. In: (Scheel D, Wasternack C), Plant signal transduction. Oxford University Press, Oxford. p. 1-5.
  • Sharma HC, Sujana G, Rao DM. 2009. Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod-Plant Interact, 3: 151-161.
  • Shorthouse JD, Rohfritsch O. 1992. Biology of insect-induced galls. Oxford University Press, New York.
  • Singer MS, Bernays EA, Carriere Y. 2002. The interplay between nutrient balancing and toxsin dilution in foraging by a generalist insect herbivore. Animal Behaviour, 64: 629- 643.
  • Solbreck C, Sillén-Tullber B. 1990. Population dynamics of a seed feeding bug, Lygaeus equestris. 1. Habitat patch structure and spatial dynamics. Oikos, 58: 199-209.
  • Stærk D, Christensen J, Lemmich E, Duus JØ, Olsen CE, Jaroszewski JW. 2000. Cytotoxic activity of some phenanthroindolizidine N-oxide alkaloids from Cynanchum vincetoxicum. Journal of Natural Products, 63: 1584-1586.
  • Stærk D, Lykkeberg AK, Christensen J, Budnik BA, Abe F, Jaroszewski JW. 2002. In vitro cytotoxic activity of phenanthroindolizidine alkaloids from Cynanchum vincetoxicum and Tylophora tanakae against drug-sensitive and multidrug-resistant cancer cells. Journal of Natural Products, 65: 1299-1302.
  • Stehr FW, Cook EF. 1968. A Revision of the Genus Malacosoma Hübner in North America (Lepidoptera: Lasiocampidae): Systematics, Biology, Immatures, Parasites. Smithsonian Institution Press, Washington, DC.
  • Turlings TCJ, Tumlinson JH. 1992. Systemic release of chemical signals by herbivore-injured corn. Proceedings of the National Academy of Sciences, 89: 8399-8402. Turlings TCJ, Tumlinson JH, Lewis WJ. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science, 250: 1251-1253.
  • Usha Rani P, Jyothsna Y. 2010. Biochemical and enzymatic changes in rice as a mechanism of defense. Acta Physiol Plant, 32: 695-701.
  • Van Zandt PA, Agrawal AA. 2004. Specificity of induced plant responses to specialist herbivores of the common milkweed Asclepias syriaca. Oikos, 104: 401-409.
  • War AR, Paulraj MG, War MY, Ignacimuthu S. 2011a. Jasmonic acid- mediated induced resistance in groundnut (Arachis hypogaea L.) against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Journal of Plant Growth Regulation, 30: 512-523.
  • War AR, Paulraj MG, War MY, Ignacimuthu S. 2011b. Herbivore- and elicitor-induced resistance in groundnut to Asian armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Plant Signaling and Behavior, 6: 1769-1777.
  • Whittaker RH. 1970. The biochemical ecology of higher plants. In: (Sondheimer E, Simeone JB), Chemical ecology. Academic Press, Boston. pp. 43-70.
  • Williams MAJ. 1994. Plant Galls: Organisms, Interactions, Populations. Clarendon, Oxford.
  • Yanar O. 2007. Meşe güvesi Lymantria dispar L. (Lepidoptera: Lymantrııdae) ve Amerikan Beyaz Kelebeği Hyphantria cunea (Drury) (Lepidoptera: Arctııdae)’de besin seçimi ve gelişimine etki eden kimyasal faktörlerin geometrik analizlerle belirlenmesi. Doktora tezi, Ondokuz Mayıs Üniversitesi Fen Bilimler Üniversitesi, 84.