Bitki Büyümesinde ve Gelişiminde Bitki Büyümesini Teşvik Eden Rizobakterinin (PGPR) Rolü: Toprak-Bitki İlişkisi

Bitki büyümesini teşvik eden rizobakteri (PGPR) rizosferi kolonize eden, kök büyümesine ve gelişimine katkı sağlayan serbest yaşayan toprak bakterilerin yararlı bir grubudur. PGPR, fitohormonların üretimi, inorganik fosfatların çözündürülmesi, demir şelatlayıcı sideroforlar aracılığıyla artan demir alımı, bitki metabolizmasını ve sinyal yolaklarını etkileyen uçucu bileşiklerin üretimi gibi direkt etki mekanizmalar sayesinde bitki büyümesinde önemli bir rol oynamaktadır. Ayrıca, PGPR, bitki büyüme oranını indirekt olarak iyileştiren veya arttıran rizosfer mikroorganizmaları ve toprak ile sinerjistik veya antogonistik etkileşimler göstermektedir. Bitkilerde PGPR büyümesini ve çoğalmasını çeşitli çevresel faktörler etkilemektedir. PGPR ile ilişkili biyoteknoloji, nanoteknoloji, tarımsal biyoteknoloji ve kimya mühendisliği uygulamalarını birleştiren multidisipliner araştırmaların incelenmesinin yanı sıra yeni yaklaşımların ve tekniklerin kullanılması ile ele alınabilecek birçok boşluk ve sınırlama bulunmaktadır. Dahası, PGPR’ nin sera gazlarının (GHG’ ler), karbon ayak izinin emisyonunu azalttığı ve ayrıca besin kullanım verimliliğini arttırdığı bilinmektedir. Bu derlemede, sürdürülebilir tarımda PGPR’ nin önemi ve onların bitki büyüme ve gelişimindeki rolü tanımlanmıştır.

Role of Plant Growth Promoting Bacteria (PGPR) in Plant Growth and Development: Soil-Plant Relationship

Plant growth-promoting rhizobacteria (PGPR) is a beneficial group of free-living soil bacteria thatcolonize the rhizosphere and are helpful in root growth and development. PGPR plays an importantrole in plant growth through the production of phytohormones, solubilization of inorganic phosphate,increased iron nutrition via iron-chelating siderophores and volatile compounds that affect the plantmetabolism and signalling pathways. Additionally, PGPR shows synergistic and antagonisticinteractions with rhizosphere microorganisms and soil which indirectly improve and enhance plantgrowth rate. Various environmental factors affect the PGPR growth and proliferation in the plants.There are several shortcomings and limitation in the PGPR research which can be addressed throughthe use of modern approaches and techniques by exploring multidisciplinary research whichcombines applications in microbiology, biotechnology, nanotechnology, agro-biotechnology, andchemical engineering. Furthermore, PGPR is also known to reduce the emission of greenhouse gases(GHGs), carbon footprint, and also increase the nutrient-use efficiency. Here we describe theimportance of PGPR in sustainable agriculture and their role in plant growth and development.

___

  • Ahemad M, Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University-Science, 26: 1-20. doi: 10.1016/j.jksus.2013.05.001
  • Akhtar N, Qureshi MA, Iqbal A, Ahmad MJ, Khan KH. 2012. Influence of Azotobacter and IAA on symbiotic performance of Rhizobium and yield parameters of lentil. J. Agric. Res., 50(3): 361-372.
  • Alawiye TT ve Babalola OO. 2019. Bacterial Diversity and Community Structure in Typical Plant Rhizosphere. Diversity, 11(10): 179. doi:10.3390/d11100179.
  • Altın N ve Bora T. 2005. Bitki Gelişimini Uyaran Kök bakterilerinin Genel özellikleri ve etkileri, Anadolu, J. of AARI, 15 (2): 87-103.
  • Antoun H. 2003. Field and Green house Trials Performed with Phosphate Solubiling Bacteria and Fungi. http://www.webcd.usal.es/web/psm/abstracts/antoun.htm.
  • Antoun H ve Prevost D. 2005. Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Netherlands, pp: 1–38.
  • Arora NK, Tewari S, Singh R. 2013. Multifaceted Plant-Associated Microbes and Their Mechanisms Diminish the Concept of Direct and Indirect PGPRs. Plant Microbe Symbiosis: Fundamentals and Advances, 411-449. doi: 10.1007/978-81- 322-1287-4_16.
  • Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK. 2012. In book: Bacteria in Agrobiology: Stress Management. Chapter: PGPR for protection of plant health under saline conditions. In: Maheshwari DK (ed.), Springer-Verlag Berin Heildelberg, pp: 239-258. doi: 10.1007/978-3-662-45795-5_12.
  • Apsimon H, Thornton I, Fyfe W, Hong Y, Leggett J, Nriagu JO, Pacyna JN, Page AL, Price R, Skinner B, Steinnes E, and Yim W. 1990. Anthropogenically induced global change-report of working group three, IUGS workshop on global change past and present. Palaeogeography Palaeoclimatology Palaeoecology 82: 97-111.
  • Babalola OO. 2010. Beneficial bacteria of agricultural importance. Biotechnol Lett, 32(11): 1559–1570. doi: 10.1007/s10529-010-0347-0.
  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Smith DL. 2018. Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01473.
  • Badri DV ve Vıvanco JM. 2009. Regulation and function of root exudates. Plant, Cell, Environment, 32(6): 666–681. doi:10.1111/j.1365-3040.2009.01926.x
  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. 2006. The Role of Root Exudates in Rhizosphere Interactions with Plants and Other Organisms, Annu. Rev. Plant Biol. 57(1): 233–66. doi: 10.1146/ annurev.arplant. 57.032905.105159.
  • Bari R ve Jones JDG. 2009. Role of plant hormones in plant defence responses. Plant Mol. Biol. 69(4): 473-488. doi: 10.1007/s11103-008-9435-0.
  • Barrios E. 2007. Soil biota, ecosystem services and land productivity. Ecologıcal Economıcs. 64(2): 269–285. doi:10.1016/j.ecolecon.2007.03.004.
  • Bhardwaj KKR ve Novak B. 1978. Effect of moisture and nitrogen levels on the decomposition of wheat straw in soil. Zentralblatt für Bacteriology, Parasitenkunde, Infektionskrankheiten und Hygiene. Zweite Naturwissenschaftliche Abteilung: Microbiology Der Landwirtschaft, Der Technology Und Des Umweltschutzes. 133(6): 477-482. doi: 10.1016/s0323-6056(78)80103-7.
  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N. 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories. 13(1): 66. doi: 10.1186/1475-2859-13-66.
  • Bhattacharya PN, Jha DK. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiolgy Biotechnolgy. 28(4): 1327–1350. doi: 10.1007/s11274-011-0979-9.
  • Beavington F. 2000. Foundation work on soil and human health. Eur. J. Soil Sci. 51:365-366. Beck L, Römbke J, Breure AM, Mulder C. 2005. Considerations for the use of soil ecological classification and assessment concepts in soil protection. Ecotoxicolgy and Environmental Safety. 62(2): 189–200. doi: 10.1016/j.ecoenv.2005.03.024.
  • Bever JD, Westover KM, Antonovics J. 1997. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology. 85(5): 561–573. doi: 10.2307/2960528.
  • Bever JD. 2002. Negative feedback within a mutualism: hostspecific growth of mycorrhizal fungi reduces plant benefit. Proceedings of the Royal Society B: Biological Sciences. 269(1509): 2595–2601. doi: 10.1098/rspb.2002.2162.
  • Bever JD. 2003. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist. 157(3): 465–473. doi: 10.1046/j.1469- 8137.2003.00714.x.
  • Bonkowski M, Villenave C, Griffiths B. 2009. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant and Soil. 321(1-2): 213–233. doi: 10.1007/s11104-009-0013-2.
  • Buée M, De Boer W, Martin F, Van OL, Jurkevitch E. 2009. The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant and Soil. 321(1-2): 189–212. doi: 10.1007/s11104-009-9991-3.
  • Brussaard L. 2012. Ecosystem services provided by the soil biota. In: Wall DH, Bardgett RD, Behan-Pelletier V et al (eds), Soil ecology and ecosystem services. Oxford University Press., pp: 45–58.
  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology. 64(1): 807–838. doi: 10.1146/annurevarplant- 050312-120106.
  • Cejudo FJ, Paneque A. 1986. Short-term nitrate (nitrite) inhibition of nitrogen fixation in Azotobacter chroococcum. Journal of Bacteriology. 165(1): 240-243. doi: 10.1128/jb.165.1.240-243.1986.
  • Chabot R, Antoun H, Cescas MP. 1993. Stimulation in the growth of corn and romaine lettuce by microorganisms dissolving inorganic phosphorus. Canadian Journal of Microbiology. 39(10): 941–947. doi:10.1139/m93-142.
  • Chen C, Chen HYH, Chen X, Huang Z. 2019. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nature Communications. 10(1): 1332. doi: 10.1038/s41467-019-09258-y.
  • Choudhary DK, Johri BN. 2009. Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR). Microbiological Research. 164(5):493–513. doi: 10.1016/j.micres.2008.08.007.
  • Cornelis P. 2010. Iron uptake and metabolism in pseudomonads. Applied Microbiology Biotechnology. 86(6): 1637-1645. doi: 10.1007/s00253-010-2550-2.
  • Crowley DE, Rengel Z. 1999. Biology and chemistry of rhizosphere influencing nutrient availability. In: Rengel Z (ed) Mineral nutrition of crops: Fundamental mechanisms and implications. The Haworth Press, New York, p: 1–40. Dejordjevic MA, Gabriel DW, Rolfe BG. 1987. Rhizobium-the refined parasite of legumes. Annu. Rev Phytopathology. 25(1): 145-168. doi: https://doi.org/10.1146/annurev.py.25. 090187.001045.
  • De Vleesschauwer D, Hofte M. 2009. Rhizobacteria induced systemic resistance. Advences Botanical Research. 51:223– 281. doi: 10.1016/s0065-2296(09)51006-3.
  • Disi JO, Mohammad HK., Lawrence K, Kloepper J, Fadamiro HA. 2019. soil bacterium can shape belowground interactions between maize, herbivores and entomopathogenic nematodes. Plant Soil, 437:83–92.
  • Dobbelaere S, Vanderleyden J, Okon Y. 2003. Plant growth promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences. 22(2):107-149. doi: https://doi.org/10.1080/713610853.
  • Eisenhauer N, Beßler H, Engels C, Gleixner G, Habekost M, Milcu A, et al. 2010. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology, 91, 485–496. Alexander, M. (1977a). ‘Introduction to Soil Microbiology.’ (John Wiley: NY.)
  • Figueiredo MVB, Bonifacio A, Rodrigues AC, Araujo FF. 2016. Plant growth-promoting rhizobacteria: key mechanisms of action. Microbial-mediated induced systemic resistance in plants. pp: 23–37. doi: 10.1007/978-981-10-0388-2_3.
  • Frıtsche W. 1990. Mikrobiologie. Gustav Fischer Verlag. Jena. Fukuyama K. 2004. Structure and function of plant-type ferredoxins. Photosynthesis Research. 81(3): 289–301. doi: 10.1023/b:pres.0000036882.19322.0a.
  • Fasciglione G, Casanovas EM, Quillehauquy V, Yommi AK, Goñi MG, Roura SI, Barassi CA. 2015. Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Scientia Horticulturae. 195: 154–162. doi:10.1016/j.scienta.2015.09. 015
  • Gaby JC, Buckley DH. 2012. A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS One 7(7): e42149. doi: https://doi.org/10.1371/journal.pone. 0042149.
  • Glick BR. 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiology Letters. 251(1): 1–7. doi: 10.1016/j.femsle.2005.07.030.
  • Glick BR, Cheng Z, Czarny J, Duan J. 2007. Promotion of plant growth by ACC deaminaseproducing soil bacteria. European Journal of Plant Pathology. 119(3): 329–339. doi: 10.1007/s10658-007-9162-4.
  • Gray EJ, Smith DL. 2005. Intracellular and extracellular PGPR: commonalities and distinctions in the plant bacterium signaling processes. Soil Biology and Biochemistry. 37(3): 395–412. doi: 10.1016/j.soilbio.2004.08.030.
  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK. 2018. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206: 131–140. doi:10.1016/j.micres.2017.08.016 .
  • Goswami D, Thakker JN, Dhandhukia PC. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food, Agriculture. 2: 1127500. http://dx.doi.org/10.1080/23311932.2015.1127500.
  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V. 2015. Plant Growth Promoting Rhizobacteria (PGPR): Current and Future Prospects for Development of Sustainable Agriculture. J Microb Biochem Technol 7: 096-102. doi:10.4172/1948-5948.1000188.
  • Hart MM, Antunes PM, Abbott LK. 2017. Unknown risks to soil biodiversity from commercial fungal inoculants. Nat. Ecol. Evol. 1: 0115. doi: 10.1038/s41559-017-0115.
  • Hartmann A, Rothballer M, Schmid M. 2008. Lorenz H: A pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil. 312(1-2): 7-14. doi: 10.1007/s11104-007-9514-z.
  • Hartmann A., Schmid M., van Tuinen D., Berg G. 2009. Plantdriven selection of microbes. Plant and Soil, 321 (1): 235- 257. doi: 10.1007/s11104-008-9814-y.
  • Hassan MK, McInroy JA, Kloepper JW. 2019. The Interactions of Rhizodeposits with Plant Growth-Promoting Rhizobacteria in the Rhizosphere: A Review. Agriculture. 9(7):142. doi:10.3390/agriculture9070142.
  • Hassan MK., McInroy JA, Jones J, Shantharaj D, Liles MR, Kloepper JW. 2019. Pectin-Rich Amendment Enhances Soybean Growth Promotion and Nodulation Mediated by Bacillus Velezensis Strains. Plants. 8(5):120. doi: 10.3390/plants8050120.
  • Hiltner L. 1904. About new experiences and problems in the field of Bodenbakteriologie. Works Ger Agric Soc 98: 59–78.
  • Hirsch AM, Bauer WD, Bird DM, Cullimore J, Tyler B, Yoder JI. 2003. Molecular signals and receptors: controlling rhizosphere interactions between plants and other organisms. Ecology. 84(4):858–868. doi: 10.2307/3108029.
  • İpek M. Eşitken A. 2017. The Actions of PGPR on Micronutrient Availability in Soil and Plant Under Calcareous Soil Conditions: An Evaluation over Fe Nutrition. Plant-Microbe Interactions in Agro-Ecological Perspectives. 81–100. doi: 10.1007/978-981-10-6593-4_4.
  • Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S. 2017. The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions. Front. Plant Sci. 8:1617. doi: 10.3389/fpls.2017.01617.
  • Jeffery S, Gardi C, Jones A, Montanarella L, Marmo L, Miko L, Ritz K, Peres G, Roombke J, van der Putten WH (eds). 2010. The soil environment. In: European atlas of soil biodiversity, European Commission, Publication.
  • Johnson SN, Erb M, Hartley SE. 2016. Roots under attack: contrasting plant responses to belowand aboveground insect herbivory. New Phytol. 210(2): 413–418. doi: https://doi.org/ 10.1111/nph.13807.
  • Khan MS, Zaidi A, Wani PA, Oves M. 2009. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chemistry Letters. 7(1): 1–19. doi: 10.1007/s10311-008-0155-0.
  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA. 2010. Plant growth promotion by phosphate solubilizing fungi - current perspective. Archives of Agronomy and Soil Science. 56(1): 73-98. doi: 10.1080/03650340902806469.
  • Kiseleva AA, Tarachovskaya ER, Shishova MF. 2012. Biosynthesis of phytohormones in algae. Russ J Plant Physiol 59(5): 595–610. doi: 10.1134/S1021443712050081.
  • Kloepper JW, Leong J, Teintze M, Scroth MN. 1980. Enhancement of plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature. 286(5776): 885-886. doi: 10.1038/286885a0.
  • Kloepper JW, Lifshitz R, Zablotowicz RM. 1989. Free-living bacterial inocula for enhancing crop productity. Trends in Biotechnology. 7(2):39-44. doi: https://doi.org/10.1016 /0167-7799(89)90057-7
  • Kloepper JW, Ryu CM, Zhang SA. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11): 1259–1266. doi: 10.1094/phyto. 2004.94.11.1259.
  • Kumar Verma D, Pandey A, Mohapatra B, Srivastava S, vd. 2019. Plant Growth Promoting Rhizobacteria (PGPR): An Eco- Friendly Approach for Sustainable Agriculture and Improved Crop Production,In book: Microbiology for Sustainable Agriculture, Soil Health and Environmental Protection, Publisher: Apple Academic Press. pp: 3-80.
  • Kumari B, Mallick MA, Solanki MK, Solanki AC, Hora A, Guo W. 2019. Plant Growth-Promoting Rhizobacteria (PGPR): Modern Prospects for Sustainable Agriculture, R. A. Ansari, I. Mahmood (eds.), Plant Health Under Biotic Stress. pp: 109- 127. doi: https://doi.org/10.1007/978-981-13-6040-4_6.
  • Leclere V, Bechet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P. 2005. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Applied and Environmental Microbiology. 71(8): 4577–4584. doi:10.1128/aem.71.8. 4577-4584.2005.
  • Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. 2014. Metalloproteins containing cytochrome, iron–sulfur, or copper redox centers. Chemical
  • Reviews. 114(8): 4366–4469. doi: 10.1021/cr400479b. Loyola-Vargas V, Broeckling C, Badri D, Vivanco J. 2007. Effect of transporters on the secretion of phytochemicals by the roots of Arabidopsis thaliana. Planta. 225(2): 301–310. doi: 10.1007/s00425-006-0349-2.
  • Lugtenberg B, Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annual Review of Microbiology Microbiology. 63(1): 541–556. doi: 10.1146/annurev.micro. 62.081307.162918.
  • Lynch JM. 1987. The rhizosphere. Wiley Interscience, Chichester, U.K.
  • Lynch JM. 1990. The Rhizosphere. John Wiley, Sons, New York.
  • Lyu D, Backer RG, Robinson W, Smith DL. 2019. Plant-growth promoting rhizobacteria for cannabis production: Yield, cannabinoid profile and disease resistance. Front. Microbiol. doi:10.3389/fmicb.2019.01761.
  • MacMillan J. 2002. Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant Growth Regul. 20(4): 387–442. doi: 10.1007/s003440010038.
  • Majeed A, Muhammad Z, Ahmad H. 2018. Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress managementof crops, Plant Cell Reports. 37:1599–1609. doi: https://doi.org/10.1007/s00299-018-2341-2.
  • Malusa E, Pinzari F, Canfora L. 2016. Eficacy of biofertilizers: challenges to improve crop production. Microbial inoculants in sustainable agricultural productivity. pp:17-40. doi: 10.1007/978-81-322-2644-4_2.
  • Mazid M, Khan ZH, Quddusi S, Taqi AK., Firoz M. 2011. Significance of sulphur nutrition aganist metal induced oxidative stress in plants, J Stress Physiol Biochem. 7(3):65-84. Meeting FB. 1992. Soil Microbial Ecology: Applications in Agricultural and Environmental Management. Marcel Dekker, New York.
  • Mehmood U., Inam-ul-Haq M., Saeed M., Altaf A., Azam F., Hayat S. 2018. A Brıef Revıew On Plant Growth Promotıng Rhızobacterıa (Pgpr): A Key Role in Plant Growth Promotıon, Plant Protection, 02 (02): 77-82. ISSN: 2617-1287 (Online), 2617-1279 (Print).
  • Mendes R, Kruijt M, Bruijin ID, Dekkers E, Voort MVD, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker P, Raaijmakers JM. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacterial. Science 332:1097–1100. doi: 10.1126/science.1203980.
  • Mendes S, Azul AM, Castro P, Röembke J, Sousa JP. 2016. Chapter 16: Protecting soil biodiversity and soil functions: current status and future challenges. In: Castro P, Azeiteiro UM, Bacelar Nicolau P, Leal Filho W, Azul AM (eds) Biodiversity and education for sustainable development, World sustainability series. Springer, Cham.
  • Morris RM, Nunn BL, Frazar C, Goodlett DR, Ting YS, Rocap G. 2010. Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. The ISME Journal 4:673–685. doi:10.1038/ismej.2010.4.
  • Mukerji KG, Manoharachary C, Singh J. 2006. Microbial Activity in the Rhizosphere (Soil Biology) Springer. 6: 199-222.
  • Nadarajah KK. 2016. Induced Systemic Resistance in Rice. Microbial-Mediated Induced Systemic Resistance in Plants, 103–124. doi:10.1007/978-981-10-0388-2_7.
  • Narayanasamy P. 2013. Mechanisms of action of fungal biological control agents. In: Narayanasamy P (ed) Biological management of diseases of crops, progress in biological control. Springer Science + Business Media, Dordrecht, pp: 99–200.
  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P. 2011. Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol. Agron. Soc. Environ. 15(2): 327-337.
  • Odum EP, Barrett GW. 2005. Fundamentals of Ecology, 5th Edn. Belmont, USA: Thomson Brooks/Cole.
  • Owen D, Williams AP, Griffith GW, Withers, PJA. 2015. Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl. Soil Ecol. 86:41–54. doi: 10.1016/ j.apsoil.2014.09.012.
  • Orgiazzi A, Bardgett RD, Barrios E, Behan-Pelletier V, Briones MJI, Chotte JL, De Deyn GB, Eggleton P, Fierer N, Fraser T, Hedlund K, Jeffrey S, Johnson NC, Jones A, Kandeler E, Kaneko N, Lavelle P, Lemanceau P, Miko L, Montanarella L, de Souza Moreira FM, Ramirez KS, Scheu S, Singh BK, Six J, van der Putten WH, Wall DH. 2016. Global soil biodiversity atlas. Luxembourg: European Commission, Publications Office of the European Union. doi: https://doi.org/10.2788/2613.
  • Park D. 1963. The ecology of soil-borne fungal disease. Annual Review of Phytopathology. 1(1): 241–258. doi:10.1146/annurev.py.01.090163.001325
  • Philippot L, Raaijmakers J, Lemanceau P, Van Der Putten W. 2013. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11(11):789-799. doi:10.1038/nrmicro3109 .
  • Pinton R, Varanini Z, Nannipieri P (Editors). 2001. The rhizosphere: biochemistry and organic substances at the soil– plant interface. Marcel Dekker, New York.
  • Prasad M, Chaudhary M, Choudhary M, Kumar TK, Kumar Jat L. 2017. Rhizosphere Microorganisms Towards Soil Sustainability and Nutrient Acquisition, Agriculturally Important Microbes for Sustainable Agriculture. pp: 31-49. doi: 10.1007/978-981-10-5589-8_2.
  • Prashar P, Kapoor N, Sachdeva S. 2013. Rhizosphere: its structure, bacterial diversity and significance. Rev. Environ. Sci. Biotechnol. doi: 10.1007/s11157-013-9317-z.
  • Raaijmakers JM, Weller DM. 2001. Exploiting genotypic diversity of 2,4-diacetylphloroglucinolproducing Pseudomonas spp.: characterization of superior rootcolonizing P. fluorescens strain Q8r1-96. Appl. Environ. Microbiol. 67(6): 2545-2554. doi: 10.1128/aem.67.6.2545- 2554.2001.
  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil. 321(1-2): 341–361. doi:10.1007/s11104-008-9568-6.
  • Rai A, Nabti E. 2017. Plant Growth-Promoting Bacteria: Importance in Vegetable Production. Microbial Strategies for Vegetable Production. pp: 23–48. doi:10.1007/978-3-319- 54401-4_2
  • Ramjegathesh R, Samiyappan R, Raguchander T, Prabakar K, Saravanakumar D. 2012. Plant–PGPR Interactions for Pest and Disease Resistance in Sustainable Agriculture. Bacteria in Agrobiology: Disease Management. pp: 293–320. doi:10.1007/978-3-642-33639-3_11.
  • Ramos Solano B, Barriuso Maicas J, Gutiérrez Mañero FJ. 2008. Physiological and Molecular Mechanisms of Plant Growth Promoting Rhizobacteria (PGPR). Plant-Bacteria Interactions. pp: 41 - 54. doi:10.1002/9783527621989.ch3.
  • Reddy PP. 2014. Potential role of PGPR in agriculture. Plant growth promoting rhizobacteria for horticultural crop protection. pp: 17–34. doi:10.1007/978-81-322-1973-6_2.
  • Roesti D, Gaur R, Johri BN, Imfeld G, Sharma S, Kawaljeet K., Aragno M. 2006. Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol. and Biochem. 38(5):1111–1120. doi: 10.1016/j.soilbio.2005.09. 010.
  • Saleem M, Arshad M, Hussain S, Bhatti AS. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology and Biotechnology. 34(10): 635–648. doi:10. 1007/s10295-007-0240-6.
  • Salvagiotti F, Cassman KG, Specht JE, Walters DT, Weiss A, Dobermann A. 2008. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research. 108(1): 1-13. doi:10.1016/j.fcr.2008.03.001.
  • Seshadri S, Muthukumarasamy R, Lakshminarasimhan C, Lgnacimuthu S. 2000. Solubilization of inorganic phosphates by Azospirillum halopraeferans. Current sience. 79(5): 565- 567.
  • Setiawati TC, Mutmainnah L. 2016. Solubilization of Potassium containing mineral by microorganisms from sugarcane Rhizosphere. Agriculture and Agricultural Science Procedia. 9: 108-117. doi:10.1016/j.aaspro.2016.02.134.
  • Sharma A, Verma RK. 2018. Root–Microbe Interactions: Understanding and Exploitation of Microbiome. Root Biology. 323–339. doi:10.1007/978-3-319-75910-4.
  • Sharma K, Sharma S, Prasad SR. 2019. PGPR:Renewable tool for sustainable agriculture. Int.J.Curr.Microbiol. App.Sci. 8(1): 525-530.
  • Shridhar BS. 2012. Review: nitrogen fixing microorganisms.Int.J.Microbial.Res. 3(1): 46–52. doi: 10.5829/idosi.ijmr.2012.3.1.61103
  • Singh M, Singh D, Gupta A, Pandey KD, Singh PK., Kumar A. 2019. Plant Growth Promoting Rhizobacteria. PGPR Amelioration in Sustainable Agriculture. pp: 41–66. doi:10.1016/b978-0-12-815879-1.00003-3.
  • Sivasakthi S, Usharani G, Saranraj P. 2014. Biocontrol potentiality of plant growth promoting bacteria (PGPR)– Pseudomonas fluorescens and Bacillus subtilis: a review. Afr. J. Agric. 9:1265–1277.
  • Smail SJ, Leckie AC, Clinton PW, Hickson AC. 2010. Plantation management induces long-term alterations to bacterial phytohormone production and activity in bul soil. Appl. Soil Ecol. 45:310-314.
  • Steffan JJ, Brevik EC, Burgess LC, Cerda A. 2018. The effect of soil on human health: an overview. Eur. J. Soil Sci. 69(1):159-171. doi: https://doi.org/10.1111/ejss.12451.
  • Umesha S, Singh PK, Singh RP. 2018. Microbial Biotechnology and Sustainable Agriculture, In: Biotechnology for Sustainable Agriculture. pp: 185-205. doi: http://dx.doi.org/ 10.1016/B978-0-12-812160-3.00006-4.
  • Uren NC. 2000. Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In The rhizosphere: biochemistry and organic substances at the soil–plant interface. pp: 19–40.
  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne- Loccoz Y, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C. 2013. Plant growth-promoting rhizobacteria and root system functioning, Front. Plant Sci. 4:356. doi: https://doi.org/10.3389/fpls.2013.00356.
  • Van Loon LC, Bakker PAHM, Pieterse CMJ. 1998. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol. 36(1): 453–483. doi:10.1146/ annurev.phyto.36. 1.453.
  • Van Loon LC, Bakker PAHM. 2006. Root-associated bacteria inducing systemic resistance. Plant-associated bacteria. pp: 269–316.
  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulaq Boyce A. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability-A review. Molecules. 21(5): 573. doi:10.3390/molecules21050573.
  • Vos CNF, Kazan K. 2016. Belowground defence strategies in plants, Signaling and Communication in Plants, Springer, Berlin.
  • Yazaki K. 2005. Transporters of secondary metabolites. Curr. Opin. Plant Biol. 8(3): 301–307. doi:10.1016/j.pbi.2005. 03.011.
  • Zaidi A, Khan M, Ahemad M, Oves M. 2009. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol. Immunol. Hung. 56(3):263–284. doi:10.1556/ amicr.56.2009.3.6.
  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D. 2003. Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology. 84(8): 2042–2050. doi: 10.1890/02-0433.
  • Zandi P, Basu SK. 2016. Role of Plant Growth-Promoting Rhizobacteria (PGPR) as biofertilizers in stabilizing agricultural ecosystems. Organic farming for sustainable agriculture. pp: 71-87. doi:10.1007/978-3-319-26803-3_3.
  • Zhang XX, Zhang RJ, Gao JS, Ma XT, Yin HQ, Zhang CW, Feng K, Deng Y. 2017. Thirty-one years of rice-ricegreen manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biol. Biochem. 104:208–217.
  • Xie X, Wang J, Yuan H. 2006. High-resolution analysis of catechol-type siderophores using polyamide thin ayer chromatography. J. Microbiol Met. 67(2): 390–393. doi:10. 1016/j.mimet.2006.04.022.
  • Weston LA, Ryan PR, Watt M. 2012. Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J. Exp. Bot. 63(9): 3445–3454. doi:10.1093/ jxb/ers054.
  • Whipps JM. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52: 487–511. doi:10.1093/jexbot/ 52.suppl_1.487.
  • Quresh MA, Shahzad H, Saeed MS, Ullah S, Ali MA, Mujeeb F, Anjum MA. 2019. Relative potential of rhizobium species to enhance the growth and yield attributes of cotton (Gossypium hirsutum L.). Eurasian J. Soil Sci. 8(2): 159-166. doi: https:// doi. org/10.18393/ejss.544747.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)