Bioremediation of Heavy Metals by Use of Bacteria

Bioremediation of Heavy Metals by Use of Bacteria

Heavy metal pollution generally occurs due to socio-economic, industrial, and anthropogenic activities, which may cause an environmentally hazardous and serious severe threat to the survival of the organisms (genotoxic, carcinogenic, and clastogenic effects on it). Many physical and chemical remediation approaches have been proposed to deal with this pollution, but these are very time-consuming and costly. While bioremediation stands out as an inexpensive and efficient approach, the use of bacteria is thought to be a potential and productive organism to prevent this pollution. This review has evaluated the bacterial potential to clean up heavy metals from the environment and elucidated the mechanisms responsible for bioremediation.

___

  • Abatenh E, Gizaw B, Tsegaye Z, Wassie M. 2017. The role of microorganisms in bioremediation-A review. Open Journal of Environmental Biology, 2(1): 038-046.
  • Batool R, Yrjala K, Hasnain S. 2012. Hexavalent chromium reduction by bacteria from tannery effluent. Journal of Microbiology and Biotechnology, 22(4): 547-554. doi: https://doi.org/10.4014/jmb.1108.08029
  • Bharagava RN, Mishra S. 2018. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicology and Environmental Safety, 144: 88-96. doi: https://doi.org/10.1016/j.ecoenv.2017.08.040
  • Bhattacharya A, Gupta A. 2013. Evaluation of Acinetobacter sp. B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environmental Science and Pollution Research, 20(9): 6628-6637. doi: https://doi.org/10.1007/s11356-013-1 728-4
  • Bhattacharya A, Gupta A, Kaur A, Malik D. 2014. Efficacy of Acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system. Applied Microbiology and Biotechnology, 98(23): 9829-9841. doi: https://doi.org/10.1007/s00253-014-5910-5
  • Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ. 2000. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nature Biotechnology, 18(1):85–90. doi: https://doi.org/10.1038/71986
  • Campos J, Martinez-Pacheco M, Cervantes C. 1995. Hexavalent- chromium reduction by a chromate-resistant Bacillus sp. strain. Antonie van Leeuwenhoek, 68(3): 203–208. doi: https://doi.org/10.1007/BF00871816
  • Chaturvedi MK. 2011. Studies on chromate removal by chromium-resistant Bacillus sp. isolated from tannery effluent. Journal of Environmental Protection, 02(01): 76. doi: https://doi.org/10.4236/jep.2011.21008
  • Chien CC, Hung CW, Han CT. 2007. Removal of cadmium ions during stationary growth phase by an extremely cadmium‐ resistant strain of Stenotrophomonas sp. Environmental Toxicology and Chemistry: An International Journal, 26(4): 664-668. doi: https://doi.org/10.1897/06-280R.1
  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K. 2007. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. Journal of Hazardous Materials, 146(1-2): 270-277. doi: https://doi.org/10.1016/ j.jhazmat.2006.12.017
  • De J, Ramaiah N, Vardanyan L. 2008. Detoxification of Toxic Heavy Metals by Marine Bacteria Highly Resistant to Mercury. Marine Biotechnology, 10(4): 471-477. doi: https://doi.org/10.1007/s10126-008-9083-z
  • Dvořák P, Nikel PI, Damborský J, de Lorenzo V. 2017. Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnology Advances, 35(7): 845-866. doi: https://doi.org/10.1016/j.biotechadv. 2017.08.001
  • Ferrera I, Sanchez O. 2016. Insights into microbial diversity in wastewater treatment systems: How far have we come? Biotechnology Advances, 34(5): 790-802. doi: https://doi.org/10.1016/j.biotechadv.2016.04.003
  • Gadd GM. 2000. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Current Opinion in Biotechnology, 11(3): 271-279. doi: https://doi.org/10. 1016/s0958-1669(00)00095-1
  • Gadd GM. 2004. Microbial influence on metal mobility and application for bioremediation. Geoderma, 122(2-4): 109- 119. DOI: https://doi.org/10.1016/j.geoderma.2004.01.002
  • Ghodsi H, Hoodaji M, Tahmourespour A, Gheisari MM. 2011. Investigation of bioremediation of arsenic by bacteria isolated from contaminated soil. African Journal of Microbiology Research, 5(32): 5889-5895. doi: https://doi.org/10.5897/ AJMR11.837
  • Giovanella P, Cabral L, Costa AP, de Oliveira Camargo FA, Gianello C, Bento FM. 2017. Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals. Ecotoxicology and environmental safety, 140: 162-169. doi: https://doi.org/10. 1016/j.ecoenv.2017.02.010
  • Gouma S, Fragoeiro S. Bastos AC, Magan N. 2014. Bacterial and fungal bioremediation strategies. In: Microbial biodegradation and bioremediation. Elsevier, 301-323. doi: https://doi.org/10.1016/B978-0-12-800021-2.00013-3
  • Govarthanan M, Mythili R, Selvankumar T, Kamala-Kannan S, Rajasekar A, Chang YC. 2016. Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens. 3 Biotech, 6(2): 242. doi: https://doi.org/10.1007/s13205-016-0560-1
  • Gupta P, Rani R, Chandra A, Varjani S, Kumar V. 2019. The Role of Microbes in Chromium Bioremediation of Tannery Effluent. In: Bui XT, Chiemchaisri C, Fujioka T, Varjani S. (eds.) Water and Wastewater Treatment Technologies. Energy, Environment, and Sustainability. Springer, Singapore. pp. 369-377. ISBN: 978-981-13-3258-6 (Print) 978-981-13-3259-3 (Online). doi: https://doi.org/10.1007/ 978-981-13-3259-3_17
  • Gupta S, Singh D. 2017. Role of genetically modified microorganisms in heavy metal bioremediation. In: Advances in Environmental Biotechnology, Springer, Singapore. pp. 197-214. ISBN: 978-981-13-5032-0 (Print) 978-981-10- 4041-2 (Online). doi: https://doi.org/10.1007/978-981-10- 4041-2_12
  • Halttunen T, Salminen S, Tahvonen R. 2007. Rapid removal of lead and cadmium from water by specific lactic acid bacteria. International journal of food microbiology, 114(1): 30-35. DOI: https://doi.org/10.1016/j.ijfoodmicro.2006.10.040
  • Hasin AA, Gurman SJ, Murphy LM, Perry A, Smith TJ, Gardiner PE. 2010. Remediation of chromium (VI) by a methane- oxidizing bacterium. Environ Sci Technol 44:400–405. doi: https://doi.org/10.1021/es901723c
  • Hsieh JL, Chen CY, Chiu MH, Chein MF, Chang JS, Endo G, Huang CC. 2009. Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals. Journal of hazardous materials, 161(2-3):920–925. doi: https://doi.org/10.1016/j.jhazmat.2008.04.079
  • Ibrahim AA, Yusuf AG, Ismail G, Ibrahim MA, Musa AR, Sulaiman MS. 2021. Conceptual Background of Bioaccumulation in Environmental Science. World, 1(01): 035-041. doi: https://doi.org/10.53346/wjapls.2021.1.1.0015
  • Ivask A, Dubourguier HC, Pollumaa L, Kahru A (2011) Bioavailability of Cd in 110 polluted topsoils to recombinant bioluminescent sensor bacteria: effect of soil particulate matter. J Soils Sediments 11:231–237. doi: https://doi.org/10.1007/s11368-010-0292-5
  • Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K, Pugazhendhi A. 2018. Biological approaches to tackle heavy metal pollution: a survey of literature. Journal of environmental management, 217: 56-70. doi: https://doi.org/10.1016/j.jenvman.2018.03.077
  • Jafari SA, Cheraghi S, Mirbakhsh M, Mirza R, Maryamabadi A. 2015. Employing response surface methodology for optimization of mercury bioremediation by Vibrio parahaemolyticus PG02 in coastal sediments of Bushehr, Iran. CLEAN–Soil, Air, Water, 43(1): 118-126. doi: https://doi.org/10.1002/clen.201300616
  • Jebeli MA, Maleki A, Amoozegar MA, Kalantar E, Izanloo H, Gharibi F. 2017. Bacillus flexus strain As-12, a new arsenic transformer bacterium isolated from contaminated water resources. Chemosphere, 169: 636-641. doi: https:// doi.org/10.1016/j.chemosphere.2016.11.129
  • Jebelli MA, Maleki A, Amoozegar MA, Kalantar E, Shahmoradi B, Gharibi F. 2017. Isolation and identification of indigenous prokaryotic bacteria from arsenic-contaminated water resources and their impact on arsenic transformation. Ecotoxicology and Environmental Safety, 140: 170-176. doi: https://doi.org/10.1016/j.ecoenv.2017.02.051
  • Kidd KA, Muir DC, Evans MS, Wang X, Whittle M, Swanson HK, Johnston T, Guildford S. 2012. Biomagnification of mercury through lake trout (Salvelinus namaycush) food webs of lakes with different physical, chemical and biological characteristics. Science of the Total Environment, 438: 135- 143. doi: https://doi.org/10.1016/j.scitotenv.2012.08.057
  • Kuippers G, Bassil NM, Lloyd JR. 2021. Microbial colonization of cementitious geodisposal facilities, and potential “biobarrier” formation. In The Microbiology of Nuclear Waste Disposal, Elsevier. pp. 157-192. ISBN: 978-012-81- 8695-4 (Online). doi: https://doi.org/10.1016/B978-0-12- 818695-4.00008-3
  • Kumar A, Bisht BS, Joshi V, Dhewa T. 2011. Review on Bioremediation of Polluted Environment: A Management Tool. International Journal on Environmental Sciences, 1(6): 1079-1093.
  • Kumar V. 2018. Mechanism of microbial heavy metal accumulation from a polluted environment and bioremediation. In: Sharma D, Saharan BS. (eds.) Microbial Cell Factories (1st ed.), CRC Press. pp. 149-174. ISBN: 978- 131-51-6238-6 (Online). doi: https://doi.org/10.1201/ b22219-8
  • Kumaran NS, Sundaramanicam A, Bragadeeswaran S. 2011. Adsorption studies on heavy metals by isolated cyanobacterial strain (Nostoc sp.) from uppanar estuarine water, southeast coast of India. Journal of Applied Sciences Research, 7(11): 1609-1615.
  • Li H, Cong Y, Lin J, Chang Y. 2015. Enhanced tolerance and accumulation of heavy metal ions by engineered Escherichia coli expressing Pyrus calleryana phytochelatin synthase. Journal of Basic Microbiology, 55(3):398–405. doi: https://doi.org/10.1002/jobm.201300670
  • Liu S, Zhang F, Chen J, Sun G. 2011. Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. Journal of Environmental Sciences, 23(9):1544–1550. doi: https://doi.org/10.1016/s1001-0742(10)60570-0
  • Lloyd JR. 2003. Microbial reduction of metals and radionuclides. FEMS microbiology reviews, 27(2-3): 411-425. doi: https://doi.org/10.1016/s0168-6445(03)00044-5
  • Mathivanan K, Rajaram R. 2014. Isolation and characterisation of cadmium-resistant bacteria from an industrially polluted coastal ecosystem on the southeast coast of India. Chemistry and Ecology, 30(7): 622-635. doi: https://doi.org/10.1080/02757540.2014.889125
  • Mikulewicz M, Chojnacka K, Szynkowska MI. 2014. How toxicology impacts other sciences. In: Encyclopedia of Toxicology (3rd ed.), Elsevier. pp. 746–749. ISBN: 978-0- 12-386454-3 (Print) 978-0-12-386455-0 (Online). doi: https://doi.org/10.1016/b978-0-12-386454-3.00456-5
  • Miyatake M, Hayashi S. 2009. Characteristics of arsenic removal from aqueous solution by Bacillus megaterium strain UM-123. Journal of Environmental Biotechnology, 9(2): 123–129.
  • Murthy S, Bali G, Sarangi SK. 2012. Biosorption of lead by Bacillus cereus isolated from industrial effluents. British Biotechnology Journal, 2(2): 73-84.
  • Mustapha MU, Halimoon N. 2015. Screening and isolation of heavy metal tolerant bacteria in industrial effluent. Procedia Environmental Sciences, 30: 33-37. doi: https:// doi.org/10.1016/j.proenv.2015.10.006
  • Naeem A, Batool R, Jamil N. 2013. Cr (VI) reduction by Cellulosimicrobium sp. isolated from tannery effluent. Turkish Journal of Biology, 37(3): 315-322. doi: https://doi.org/10.3906/biy-1209-18
  • Nayak AK, Panda SS, Basu A, Dhal NK. 2018. Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. International Journal of Phytoremediation, 20(7): 682-691. doi: https://doi.org/ 10.1080/15226514.2017.1413332
  • Neeratanaphan L, Tanee T, Tanomtong A, Tengjaroenkul B. 2016. Identifying an efficient bacterial species and its genetic erosion for arsenic bioremediation of gold mining soil. Archives of Environmental Protection, 42(3): 58-66. doi: https://doi.org/10.1515/aep-2016-0027.
  • Nkhalambayausi-Chirwa EM, Molokwane PE, Lutsinge TB, Igboamalu TE, Birungi ZS. 2020. Advances in Bioremediation of Toxic Heavy Metals and Radionuclides in Contaminated Soil and Aquatic Systems. In: Bharagava R, Saxena G. (eds.) Bioremediation of Industrial Waste for Environmental Safety, Springer, Singapore. pp. 21-52. ISBN: 978-981-13-3425-2 (Print) 978-981-13-3426-9 (Online). doi: https://doi.org/10.1007/978-981-13-3426-9_2
  • Nooghabi MJ, Nooghabi HJ, Nasiri P. 2010. Detecting outliers in gamma distribution. Communications in Statistics - Theory and Methods, 39(4): 698-706. doi: https://doi.org/10. 1080/03610920902783856
  • Okino S, Iwasaki K, Yagi O, Tanaka H. 2000. Development of a biological mercury removal-recovery system. Biotechnology Letters, 22(9): 783-788. doi: https://doi.org/10.1023/ a:1005653825272
  • Pandey N, Bhatt R. 2015. Arsenic resistance and accumulation by two bacteria isolated from a natural arsenic contaminated site. Journal of basic microbiology, 55(11): 1275-1286. doi: https://doi.org/10.1002/jobm.201400723
  • Pandi M, Shashirekha V, Swamy M. 2009. Bioabsorption of chromium from retan chrome liquor by cyanobacteria. Microbiological Research, 164(4): 420-428. doi: https://doi.org/10.1016/j.micres.2007.02.009
  • Panwar S. 2020. Microbial Bioremediation of Heavy Metals: Emerging Trends and Recent Advances. Research Journal of Biotechnology, 15(1): 164–178.
  • Park JH, Chon HT. 2016. Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mine. Environmental Science and Pollution Research, 23(12): 11814-11822. doi: https://doi. org/10.1007/s11356-016-6335-8
  • Patel J, Zhang Q, McKay RML, Vincent R, Xu Z. 2010. Genetic engineering of Caulobacter crescentus for removal of cadmium from water. Applied biochemistry and biotechnology, 160(1): 232-243. doi: https://doi.org/ 10.1007/s12010-009-8540-0
  • Prabhakaran P, Ashraf MA, Aqma WS. 2016. Microbial stress response to heavy metals in the environment. RSC Advances, 6(111): 109862-109877. doi: https://doi.org/10.1039/c6ra10 966g
  • Salehizadeh H, Shojaosadati SA. 2003. Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Research, 37(17): 4231-4235. doi: https://doi.org/10.1016/s0043-1354(03)00418-4
  • Saranya K, Sundaramanickam A, Shekhar S, Swaminathan S, Balasubramanian T. 2017. Bioremediation of mercury by Vibrio fluvialis screened from industrial effluents. BioMed Research International, 2017: 6509648. doi: https://doi.org/ 10.1155/2017/6509648
  • Shakoori FR, Aziz I, Rehman A, Shakoori A. 2010. Isolation and characterization of arsenic reducing bacteria from industrial effluents and their potential use in bioremediation of wastewater. Pakistan Journal of Zoology, 42(3): 331-338.
  • Shakya S, Pradhan B, Smith L, Shrestha J, Tuladhar S. 2012. Isolation and characterization of aerobic culturable arsenic- resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal. Journal of Environmental Management, 95: S250-S255. doi: https://doi.org/10.1016/ j.jenvman.2011.08.001
  • Shakya S, Pradhan B. 2013. Isolation and characterization of arsenic resistant Pseudomonas stutzeri ASP3 for its potential in arsenic resistance and removal. Kathmandu University Journal of Science, Engineering and Technology, 9(1): 48-59.
  • Shamim S, Rehman A. 2012. Cadmium resistance and accumulation potential of Klebsiella pneumoniae strain CBL- 1 isolated from industrial wastewater. Pakistan Journal Zoology, 44: 203-208.
  • Sinha S, Mukherjee SK. 2009. Pseudomonas aeruginosa KUCD1, a possible candidate for cadmium bioremediation. Brazilian Journal of Microbiology, 40(3): 655-662. doi: https://doi.org/10.1590/S1517-83822009000300030
  • Skinder BM, Uqab B, Ganai BA. 2020. Bioremediation: A Sustainable and Emerging Tool for Restoration of Polluted Aquatic Ecosystem. In: Qadri H, Bhat R, Mehmood M, Dar G. (eds.) Fresh Water Pollution Dynamics and Remediation, Springer, Singapore. pp. 143-165. ISBN: 978-981-13-8276-5
  • (Print) 978-981-13-8277-2 (Online). doi: https://doi.org/10. 1007/978-981-13-8277-2_9
  • Skinner HCW, Ehrlich H. 2014. Biomineralization. In: Treatise on Geochemistry (Second Edition), Springer. pp. 105–162. ISBN: 978-008-09-8300-4 (Online). doi: https://doi.org/ 10.1016/B978-0-08-095975-7.00804-4
  • Soni R, Dash B, Kumar P, Mishra UN, Goel R. 2019. Microbes for Bioremediation of Heavy Metals. In: Singh D, Prabha R. (eds.) Microbial Interventions in Agriculture and Environment, Springer, Singapore. pp. 129-141. ISBN: 978- 981-32-9083-9 (Print) 978-981-32-9084-6 (Online). doi: https://doi.org/10.1007/978-981-32-9084-6_6
  • Sousa C, Kotrba P, Ruml T, Cebolla A, De Lorenzo V. 1998. Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. Journal of Bacteriology, 180(9):2280–2284. doi: https://doi.org/10.1128/JB.180.9.22 80-2284.1998
  • Tiwari S, Lata C. 2018. Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Frontiers in plant science, 9: 452. doi: https://doi.org/ 10.3389/fpls.2018.00452
  • Tonelli FMP, Lemos MS, Tonelli FCP. 2021. Genetically Modified Organisms as Tools for Water Bioremediation. In: Freshwater Pollution and Aquatic Ecosystems: Environmental Impact and Sustainable Management, Apple Academic Press. pp. 301-320. ISBN: 978-177-18-8958-2 (Print) 978-100-31-3011-6 (Online). doi: https://doi.org/ 10.1201/9781003130116
  • Varadhan SL, Mohan S. 2017. Selection and use of efficient bacterial strains for chromium biosorption in tannery effluent. Int. J. Recent Sci. Res., 8(3): 16230-16233.
  • Verma S, Kuila A. 2019. Bioremediation of heavy metals by microbial process. Environmental Technology & Innovation, 14: 100369. doi: https://doi.org/10.1016/j.eti.2019.100369
  • Vollmer W. 2015. Peptidoglycan. In: Tang YW, Sussman M, Liu D, Poxton I, Schwartzman J. (eds.) Molecular Medical Microbiology (2nd ed.), Academic Press. pp. 105–124. ISBN: 978-012-39-7169-2 (Print) 978-012-39-7763-2 (Online). doi: https://doi.org/10.1016/b978-0-12-397169-2.00006-8
  • Wang WX. 2016. Bioaccumulation and biomonitoring. In: Blasco J, Olivia PC, Hampel M. (eds.) Marine Ecotoxicology (1st ed.), Academic Press. pp. 99-119. ISBN: 978-012-80-3371- 5 (Print) 978-012-80-3372-2 (Online). doi: https://doi.org/ 10.1016/b978-0-12-803371-5.00004-7
  • White C, Gadd G. 2000. Copper accumulation by sulfate‐ reducing bacterial biofilms. FEMS Microbiology Letters, 183: 313-318. doi: https://doi.org/10.1111/j.1574-6968.2000. tb08977.x
  • Wu YR, He J. 2013. Characterization of anaerobic consortia coupled lignin depolymerization with biomethane generation. Bioresource Technology, 139: 5-12. doi: https://doi.org/ 10.1016/j.biortech.2013.03.103
  • Yadav M, Gupta R, Sharma RK. 2019. Green and sustainable pathways for wastewater purification. In: Ahuja S. Advances in Water Purification Techniques (1st ed.), Elsevier. pp. 355- 383. ISBN: 978-012-81-4790-0 (Print) 978-012-81-4791-7 (Online). doi: https://doi.org/10.1016/B978-0-12-814790- 0.00014-4
  • Zakaria ZA, Zakaria Z, Surif S, Ahmad WA. 2007. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. Journal of Hazardous Materials, 146(1-2): 30-38. doi: https://doi.org/ 10.1016/j.jhazmat.2006.11.052
  • Zhu Y, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N. 1999. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiology 121:1169–1177. doi: https://doi. org/10.1104/pp.121.4.1169
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Influence of Agronomic biofortification on Maize

Augustine Rajendran, Imayavaramban Veeramani

Determination of the Antimethanogenic Properties of Sumac Leaves (Rhus coriaria L.) Subsitution at Different Ratios İnstead of Corn Silage in Sheep Rations by in Vitro Gas Production Method

Adem Kaya, Tuğba Bakır, Atilla Başer, Bilal Selçuk, Ali Kaya

Design and Manufacture of a Dryer for Corn Grains, Ears and Cobs

Humberto Rodríguez-Fuentes, Juan Arredondo-Valdez1, Wilgince Apollon, Urbano Luna-Maldonado, Héctor Flores-Breceda, Uziel Francisco Grajeda-González, Alejandro Isabel Luna Maldonado

Diferansiyel PCR, Konvansiyonel PCR ve Nested PCR Testleri ile Canine Parvovirus'un Karşılaştırmalı Tespiti: Diferansiyel PCR ile Antijenik Varyantların Tespiti

Sibel Hasırcıoğlu, Hatice Pelin Aslım

Proximate Composition and Consumers’ Subjective Knowledge of Deep Fat Fried Chin-Chin and Functional Properties of the Wheat-Cassava Composite Flour Used

Innocent Nwazulu Okwunodulu, Judith Ucheoma Iloka, Geraldine Kasie Okakpu, John Chidiebere Okakpu

Phytochemical Screening, Antioxidant, Antiulcer, Anti-Inflammatory and Analgesic Activity of the Aqueous Extract of Angelica archangelica

Walid Mamache, Fatima Benchikh, Hassiba Benabdellah, Smain Amira, Sabira Lassas, Hind Amira, Abderrahim Benslama

The Effect of Semen Dilution on the Number of Spermatozoa Entering the Spermatheca of the Queen Honey Bee (Apis mellifera L.)

Yasin Kahya, H. Vasfi Gençer

Histopathological Research of the Therapeutic Effects of Grape (Vitis vinifera L.) Seeds Extracts on Cadmium-Exposed Carp (Cyprinus carpio L. 1758)

Nuh Korkmaz

Melissopalynological Characterization of Honey Samples from Southeastern, Nigeria

Nkechinyere Nweze, Reginald Njokuocha, Chiori Agwu, Nchedochukwu Ikegbunam, Okwong Walter

Phytochemical Profile and Antioxidant Activities of Aqueous Extract of Moringa oleifera (Lam) Collected from DR Congo and Kenya

Valence Bwana Mutwedu, James Mucunu Mbaria, Albert Wafula Nyongesa, Jafred Mulama Kitaa, Jemima Achieng Oduma