Ayçiçeğinde Macrophomina phaseolina’ya Karşı Bacillus spp. ve Stenotrophomonas sp.’nin Biyokontrol Aktivitelerinin Belirlenmesi

Macrophomina phaseolina kömür çürüklüğü olarak bilinen bir toprak patojeni olup uygun şartlar altında ayçiçeğinde %90’a yakın verim kaybına neden olabilmektedir. Toprak kaynaklı patojenlerin mücadelesinde kullanılan kimyasalların çevreye ve sağlığa verdiği büyük zararlar tarımda en önemli endişelerden biri haline gelmiştir. Bundan dolayı çalışmamızda, çeşitli bakteri türlerinin in vitro da antagonistik etkilerinin M. phaseolina'ya karşı belirlenmesi amaçlanmıştır. Toplam 38 bakteri ırkı İzmir’in Urla ilçesinden toplanan Malva sylvestris (ebegümeci), Vicia sativa (fiğ), Cicer arietinum (nohut), Papaver rhoeas (gelincik), Carlina marianum (devedikeni), Glebionis coronaria (taç papatya) ve Vicia faba (bakla) bitkilerinin rizosfer kısmındaki toprak örneklerinden izole edilmiştir. İn vitro da tüm bakteri ırkları antibiyosis etki sergilemiş fakat bunların arasında 5 bakteri izolatının yüksek inhibiyon zonu oluşturarak ortalama %55-%74 arasında değişen engelleme potansiyeli gösterdikleri belirlenmiştir. Maldi biyotipleme (MALDİ-TOF MS) yoluyla tür ve cins düzeyinde teşhis edilen en etkili bakteriler Bacillus amyloliquefaciens, Stenotrophomonas sp. ve Bacillus cereus (3 izolat) olarak tanılanmış ve bu türler M. phaseolina'ya karşı biyolojik mücadelede önemli biyokontrol ajanı olabileceklerini göstermişlerdir.

Determination of Biocontrol Potential of Bacillus spp. and Stenotrophomonas sp. against Macrophomina phaseolina in Sunflower

Macrophomina phaseolina is a soil pathogen known as charcoal rot and can cause up to 90% yield loss in sunflower under suitable conditions. The serious damage caused by chemicals used in the control of soil-borne pathogens to the environment and health has become one of the most important concerns in agriculture. Therefore, in our study, it was aimed to determine the in vitro antagonistic effects of various bacterial species against M phaseolina. A total of 38 bacterial strains were isolated from soil samples in the rhizosphere of Malva sylvestris (hibiscus), Vicia sativa (vetch), Cicer arietinum (chickpea), Papaver rhoeas (weasel), Carlina marianum (thistle), Glebionis coronaria (crown daisy) and Vicia faba collected from Urla district of İzmir. All bacterial strains exhibited antibiosis effect under in vitro conditions, but it was determined that 5 bacterial isolates among them showed a high inhibition zone and showed an average inhibition potential ranging between 55% and 74%. The most effective bacteria identified at species and genus level by Maldi biotyping (MALDITOF MS) were identified as Bacillus amyloliquefaciens, Stenotrophomonas sp. and Bacillus cereus (3 isolates), and these species showed that they can be important biocontrol agents in biological control against M. phaseolina.

___

  • Adekunle AK. Cardwell D. Florini, and T. Ikotum. 2001. Seed treatment with Trichoderma species for control of dampingoff of cowpea caused by Macrophomina phaseolina. Biocontrol Sci. Technol. 11:449-457.
  • Adhikary NK, Chowdhury MR, Begum T and Mallick R. 2019. Integrated management of stem and root rot of sesame (Sesamum indicum L.) caused by Macrophomina phaseolina (Tassi) Goid. Int. J. Curr. Microbiol. Appl. Sci. 8: 804–808. doi: 10.20546/ijcmas.2019.804.089.
  • Aegerter B, Gordon T and Davis R. 2000. Occurrence and pathogenicity of fungi associated with melon root rot and vine decline in California. Plant Dis. 84: 224–230.
  • Alijani Z, Amini J, Ashengroph M, Bahramnejad B. 2019. Antifungal activity of volatile compounds produced by Staphylococcus sciuri strain MarR44 and its potential for the biocontrol of Colletotrichum nymphaeae, causal agent strawberry anthracnose. Int J Food Microbiol. 307:108276.
  • Atef NM. 2000. In vitro antagonistic action of eggplant and sweet potato phylloplane bacteria to some parasitic fungi. Phytopathol Mediter. 39: 366–375.
  • Baird RE, Watson CE and Scruggs M. 2003. Relative longevity of Macrophomina phaseolina and associated mycobiota on residual soybean roots in soil. Plant Dis. 87: 563–566.
  • Bakhshi E, Safaie N, Shams-Bakhsh M. 2018. Bacillus amyloliquefaciens as a biocontrol agent improves the management of charcoal root in melon. J. Agr. Sci. Tech. 20: 597-607.
  • Bellaloui N, Mengistu A and Paris RL. 2008. Soybean seed composition in cultivars differing in resistance to charcoal rot (Macrophomina phaseolina). Journal of Agricultural Science, Cambridge. 146: 667–675.
  • Bhattacharyya PN, Jha DK. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol. 28:1327–1350.
  • Bojórquez-Armenta YDJ, Mora-Romero GA, López-Meyer M. 2021. Evaluation of Bacillus spp. isolates as potential biocontrol agents against charcoal rot caused by Macrophomina phaseolina on common bean. Journal of General Plant Pathology. 87: 377–386. doi: https://doi.org/10.1007/s10327-021-01019-4.
  • Brooker NL, Kuzimichev Y, Lass, J and Pavlis R. 2007. Evaluation of coumarin derivatives as anti1 fungal agents against soil borne fungal pathogens. Communications in Agricultural and Applied Biological Sciences. 72: 785–793.
  • Caballero J, Peralta C, Molla A, Del Valle EE, Caballero P, Berry C and Palma L. 2018. Draft genome sequence of Bacillus cereus CITVM-11.1, a strain exhibiting interesting antifungal activities. Journal of molecular microbiology and biotechnology. 28(1): 47-51.
  • Dave K, Gothalwal R, Singh M, Joshi N. 2021. Facets of rhizospheric microflora in biocontrol of phytopathogen Macrophomina phaseolina in oil crop soybean. Arch Microbiol. 203(2):405-412. doi: 10.1007/s00203-020-02046- z.
  • Di Gregorio S, Lampis S, Vallini G 2005. Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus a biotechnological perspective. Environ Int. 31(2): 233-41. doi: 10.1016/j.envint.2004.09.021.
  • Ghosh T, Bıswas M, Dhara S and Ghosh C. 2018. Mechanısms Involve In Jute Resıstance to Macrophomina Phaseolina Strategıes for Developing Resistant Jute Varieties. Plant Cell Bıotechnology And Molecular Bıology. 19(3-4): 91-106.
  • Heylen K, Vanparys B, Peirsegaele F, Lebbe L and De Vos P. 2007. Stenotrophomonas terrae sp. nov. and Stenotrophomonas humi sp. nov., two nitrate-reducing bacteria isolated from soil. Int. J. Syst. Evol. Microbiol. 57: 2056-2061.
  • Hussain S, Ghaffar A and Aslam M. 1990. Biological control of Macrophomina phaseolina charcoal root rot of sunflower and mungbean. J. Phytopathol. 30:157-160.
  • Idris HA, Labuschagne N and Korsten L. 2007. Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. J. Biocontrol. 40: 97-106.
  • Kamil Z, Rizk M, Saleh M and Moustafa S. 2007. Isolation and Identification of Rhizosphere Soil Chitinolytic Bacteria and their Potential in Antifungal Biocontrol. Global Journal of Molecular Sciences 2 (2): 57-66. ISSN 1990-9241.
  • Kaur S, Dhillon GS, Brar SK. 2012. Emerging phytopathogen Macrophomina phaseolina biology, economic importance and current diagnostic trends. Crit Rev Microbiol. pp.116.
  • Khan AN, Shair F, Malik K, Hayat Z, Khan MA, Hafeez FY. 2017. Molecular identification and genetic characterization of Macrophomina phaseolina strains causing pathogenicity on sunflower and chickpea. Front. Microbiol. 8:1309. doi: 10.3389/fmicb.2017.01309.
  • Kim HB, Srinivasan S, Sathiyaraj G, Quan LH, Kim SH, Bui TP, Liang ZQ, Kim YJ and Yang DC. 2009. Stenotrophomonas ginsengisoli sp. nov., a bacterium isolated from a ginseng field. Int. J. Syst. Evol. Microbiol. doi:10.1099/ijs.0.014662-0.
  • Koçak R. 2019. Konya, Karaman ve Aksaray İlleri Ayçiçek Ekiliş Alanlarındaki Beyaz Çürüklük (Sclerotinia Sclerotiorum (Lib.) De Bary) Hastalığının Durumu ve Biyolojik Mücadelesi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Bitki Koruma Anabilim Dalı, Doktora Tezi. 142 s.
  • Mah KM, Uppalapati SR, Tang Y, Allen S, Shuai B. 2012. Gene expression profiling of Macrophomina phaseolina infected Medicago truncatula roots reveals a role for auxin in plant tolerance against the charcoal rot pathogen. Physiol. Mol. Plant Pathol. 79: pp. 21-30.
  • Mahmoud A. 2010. Molecular and biological investigations of damping-off and charcoal-rot diseases in sunflower. Submitted to the Graduate School of Engineering and Natural Sciences in partial fulfillment of the requirements for the degree of Doctor of philosophy of Science. Sabanci University August 2010.
  • Mahmoud A and Budak H. 2011. First report of charcoal rot caused by Macrophomina phaseolina in sunflower in Turkey. Plant Dis. 95: 223.
  • Mahtab R, Alireza DSR, Abasali A and Masoud SNA. 2013. Study on Reaction of Sunflower Lines and Hybrids to Macrophomina phaseolina (Tassi) Goid.causal Agent of Charcoal rot Disease. World Appl. Sci. J. 21 (1): 129-133.
  • Mengistu A, Wrather A, Rupe JC. 2015. Charcoal Rot. In: Hartman GL, Rupe JC, Sikora EJ, Domier LL, Davies JA, Steffey LK, editors. Compendium of soybean diseases and pests. 5th ed. St. Paul (MN): APS Press: pp. 67–69.
  • Nico AI, Mónaco C, Dal Bello G, Alippi H. 2005. Efectos de la adición de enmiendas orgánicas al suelo sobre la capacidad patogénica de Rhizoctonia solani. II. Microflora asociada y antagonismo in vitro de los aislados más frecuentes. RIA 34:29-44.
  • Onan E, Çimen M, Karcılıoğlu A. 1992. Fungal diseases of sunflovver in Aegean Region of Türkiye. J. Turk. Phytopath. 21: 101-107.
  • Özer N, Soran H. 1994. Determination of wild disease agent in sunflower and the reactions of sunflower varietise to them in Tekirdağ province. 9. Congress of the Mediterranean Phytopathological Union. Kuşadası-Aydın. 18-24 Septemper. Türkiye Bildiriler. pp. 539-542.
  • Palleroni NJ and Bradbury JF. 1993. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int. J. Syst. Bacteriol. 43: 606-609.
  • Perez-Brandán C, Arzeno JL, Huidobro J, Grümberg B, Conforto C, Hilton S. 2012. Long-term effect of tillage systems on soil microbiological, chemical and physical parameters and the incidence of charcoal rot by Macrophomina phaseolina (Tassi) Goid in soybean. Crop Prot. 40: 73–82. doi: 10.1016/j.cropro.2012.04.018.
  • Rayatpanah S, Nanagulyan SG, Ala SV. 2012. Pathogenic and genetic diversity among Iranian isolates of Macrophomina phaseolina. Chil J Agric Res. 72:40-44.
  • Sabaté DC, Pérez Brandan C, Petroselli G, Erra-Balsells R, Audisio MC. 2017. Decrease in the incidence of charcoal root rot in common bean (Phaseolus vulgaris L.) by Bacillus amyloliquefaciens B14, a strain with PGPR properties. Biological Control. 113: pp. 1-8.
  • Santos AP, Muratore LN, Solé-Gil A, Farías ME, Ferrando A, Blázquez MA, Belfiore C. 2021. Extremophilic bacteria restrict the growth of Macrophomina phaseolina by combined secretion of polyamines and lytic enzymes Biotechnology Reports, Volume 32. doi: 10.1016/j.btre. 2021.e00674
  • Senthilkumar M, Swarnalakshmi K, Govindasamy V, Lee YK and Annapurna K. 2009. Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus, Rhizoctonia bataticola. Curr Microbiol. 58: 288-293.
  • Shehbaz M, Rauf1 S, Al-Sadi AM, Nazir Ş, Bano S, Şehzad M, Hussain MM. 2018. Introgression and inheritance of charcoal rot (Macrophomina phaseolina) resistance from silver sunflower (Helianthus argophyllus Torr. & A. Gray) into cultivated sunflower (Helianthus annuus L.). Australasian Plant Pathology. 47(4): pp. 413–420.
  • Singh N, Pandey P, Dubey R and Maheshwari D. 2008. Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World J. Microbiol. Biotechnol. 24:1669-1679. doi: 10.1007/s11274-008-9680-z.
  • Tančić Živanov S, Dedić B, Dimitrijević A, Dušanić N, Jocić S, Miklič V. 2019. Analysis of genetic diversity among Macrophomina phaseolina (Tassi) Goid. isolates from EuroAsian countries. J. Plant Dis. Prot. 126: 565–573. doi: 10.1007/s41348-019-00260-6.
  • Torres MJ, Brandan CP, Petroselli G, Erra-Balsells R and Audisio MC. 2016. Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina SEM study of fungal changes and UV-MALDITOF MS analysis of their bioactive compounds. Microbiological research. 182: 31-39.
  • Vasebi Y, Safaie N and Alizadeh A. 2013. Biological control of soybean charcoal root rot disease using bacterial and fungal antagonists in vitro and greenhouse condition. J. Crop Prot. 2: 139–150.
  • Wolf A, Fritze A, Hagemann M and Berg G. 2002. Stenotrophomonas rhizophila sp. nov., a novel plantassociated bacterium with antifungal properties. Int. J. Syst. Evol. Microbiol. 52: 1937-1944.
  • Yang HC, Im WT, Kang MS, Shin,DY and Lee ST. 2006. Stenotrophomonas koreensis sp. nov., isolated from compost in South Korea. Int. J. Syst. Evol. Microbiol. 56: 81-84.
  • Zhang Z and Yuen,GY. 2000. The role of chitinase production by Stenotrophomonas maltophilia strain C3 in biological control of Bipolaris sorokiniana. Phytopathol. 90: 384-389.
  • Zhang Z, Yuen GY, Sarath G and Penheiter AR. 2001. Chitinases from the plant disease biocontrol agent, Stenotrophomonas maltophilia C3. Phytopathol. 91: 204-211.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)
Sayıdaki Diğer Makaleler

Antagonistic Activity of Bacillus spp. Against Fire Blight Disease In vitro and In planta#

Kubilay Kurtuluş BASTAS, Haris BUTT

In Vitro Regeneration of Tea (Camellia sinensis (L). O. Kuntze) By Somatic Embryogenesis from Immature Cotyledon Tissues

Fetih SEYİS, Emine YURTERİ, Mücahit Salih CAN, Haydar KUPLEMEZ

Effect of Christmas Melon (Laganaria Breviflorus) extract on toxigenic Mycoflora Isolated from Stored Unpolished Rice sold in major Markets in Abeokuta, Nigeria

Amina BADMOS, Yetunde MAMOOD

Analysis of Accessibility to Family Health Centers in Antalya Using GIS

Orhun SOYDAN

Effects of Environmentally Relevant Ammonium Nitrate Levels Caused by Agricultural Activities on Four Amphibian Species in The Eastern Black Sea Region

Handan KARAOĞLU

Anti-Quorum Sensing Effects of Some Medicinal and Aromatic Plant Extracts on Xanthomonas axonopodis pv. Phaseoli

Kubilay Kurtulus BASTAS, Tibebu BELETE

Determination of The Physical, Physio-Chemical and Chemical Properties of Gilaburu Fruits (Viburnum opulus) Dried by Convectional Drying Technique#

Fatma Fulya DAL, Erkan KARACABEY

Pandemi Sürecinde Konya İlinde Yaşayan Yaşlı Bireylerde Meydana Gelen Sosyal ve Psikolojik Değişimlerin Peyzaj Mimarlığı Açısından Değerlendirilmesi

Sertaç GÜNGÖR, Fatma BÜTÜNER

The Essential Oil Components of Helichrysum pallasii Flowers#

Fetih SEYİS, Emine YURTERİ, Haydar KUPLEMEZ

Evaluation of Green Areas of Konya Selçuklu, Bosna-Hersek Neighborhood in Terms of Sufficiency, Management and Usage#

Ruhugul Özge GEMİCİ, Serpil ÖNDER, Ahmet Tuğrul POLAT