Düzenli Orta Düzey Egzersizin Oksidatif Stres ve Serum Prolidaz Düzeyleri Üzerindeki Etkileri: Karşılaştırmalı Bir Çalışma

Amaç: Egzersizin oksidasyon durumu üzerine etkileri halen tartışmalı bir konudur. Ayrıca egzersiz ile sreum prolidaz enzim düzeyleri arasındaki ilişki henüz bildirilmemiştir. Çalışmamızda fiziksel olarak aktif bireyler ile hareketsiz yaşam süren bireylerin oksidatif stres belirteçlerinin ve prolidaz enziminin düzeylerine göre karşılaştırılması amaçlanmıştır. Gereç ve Yöntem: On dokuz ile yirmi iki yaş aralığında ve sağlıklı olan bireyler çalışmaya dahil edildi. İki çalışma grubu oluşturuldu: Egzersiz yapan grup (n=79) ve egzersiz yapmayan grup (n=48). Katılımcılarda glutatyon peroksidaz (GPX), katalaz, malondialdehit, total antioksidan kapasite (TAK), total oksidan kapasite (TOK) ve prolidazın serum düzeyleri çalışıldı. Bulgular istatistiksel analize tabi tutuldu. Sonuç: Çalışma grupları arasında GPX (p=0.558) ve katalaz (p=0.628) düzeylerine göre istatistiksel anlamlı fark bulunmadı. Malondialdehit düzeyi egzersiz yapan grupta, prolidaz düzeyi egzersiz yapmayan grupta anlamlı düzeyde diğer gruba göre yüksekti (p

The Effects of Regular Moderate Intensity Exercise on Oxidative Stress and Serum Prolidase Levels: A Comparative Study

Background:The effects of exercise on oxidation state is still a controversial topic. Additionally, the relation between exercise and serum levels of prolidase enzyme has not been reported so far. We aim to compare sedentary and physically active individuals regarding the levels of oxidative stress biomarkers and prolidase enzyme. Materials and Methods: Healthy individuals, 19-22 years old, were enrolled in this study, encompassing the exercise group (n=79) and the sedentary group (n=48). The serum levels of glutathione peroxidase (GPX), catalase, malondialdehyde, total antioxidant status (TAS), total oxidant status (TOS), and prolidase were assayed. Statistical analyses were applied to the findings. Results: The groups demonstrate insignificant difference regarding the serum GPX (p=0.558) and catalase (p=0.628) levels. The serum levels of malondialdehyde (p

___

  • 1. Beutler E. Glutathion. In: Red Cell Metabolism: A Manual of Biochemical Methods Beutler E, ed. New York: Grune & Stratton, 1975:105–107.
  • 2. Beutler E. Red Cell Metabolism: A Manual of Biochemical Methods. 3th ed. Orlando: Grune & Stratton, 1984:134.
  • 3. Brites FD, Evelson PA, Christiansen MG, Nicol MF, Basílico MJ, Wikinski RW, et al. Soccer players under regular training show oxidative stress but an improved plasma antioxidant status. Clin Sci (Lond). 1999; 96 (4): 381-5.
  • 4. Brunelli E, Domanico F, La Russa D, Pellegrino D. Sex differences in oxidative stress biomarkers. Curr Drug Targets. 2014; 15 (8): 811-5.
  • 5. Buyukhatipoglu H, Kirhan I, Vural M, Taskin A, Sezen Y, Dag OF, et al. Oxidative stress increased in healthcare workers working 24-hour on-call shifts. Am J Med Sci. 2010; 340 (6): 462-7.
  • 6. Cao G, Prior RL. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem. 1998; 44 (6 Pt 1): 1309-15.
  • 7. Chang CK, Tseng HF, Hsuuw YD, Chan WH, Shieh LC. Higher LDL oxidation at rest and after a rugby game in weekend warriors. Ann Nutr Metab. 2002; 46 (3-4): 103-7.
  • 8. Chinard FP. Photometric estimation of proline and ornithine. J Biol Chem. 1952; 199 (1): 91-5.
  • 9. Çakır-Atabek H, Özdemir F, Çolak R. Oxidative stress and antioxidant responses to progressive resistance exercise intensity in trained and untrained males. Biol Sport. 2015; 32 (4): 321-8.
  • 10. Day BJ. Catalase and glutathione peroxidase mimics. Biochem Pharmacol. 2009 1; 77 (3): 285-96.
  • 11. El Abed K, Rebai H, Bloomer RJ, Trabelsi K, Masmoudi L, Zbidi A, et al. Antioxidant status and oxidative stress at rest and in response to acute exercise in judokas and sedentary men. J Strength Cond Res. 2011; 25 (9): 2400-9.
  • 12. Em S, Ucar D, Oktayoglu P, Bozkurt M, Caglayan M, Yıldız I, et al. Serum prolidase activity in benign joint hypermobility syndrome. BMC Musculoskelet Disord. 2014 11;15:75.
  • 13. Ercan AC, Bahceci B, Polat S, Cenker OC, Bahceci I, Koroglu A, et al. Oxidative status and prolidase activities in generalized anxiety disorder. Asian J Psychiatr. 2017; 25: 118- 122.
  • 14. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005; 38 (12): 1103-11.
  • 15. Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. Dyn Med. 2009 13; 8: 1.
  • 16. Franzoni F, Ghiadoni L, Galetta F, Plantinga Y, Lubrano V, Huang Y, et al. Physical activity, plasma antioxidant capacity, and endothelium-dependent vasodilation in young and older men. Am J Hypertens. 2005; 18 (4 Pt 1): 510-6.
  • 17. Gecit I, Aslan M, Gunes M, Pirincci N, Esen R, Demir H, et al. Serum prolidase activity, oxidative stress, and nitric oxide levels in patients with bladder cancer. J Cancer Res Clin Oncol. 2012; 138 (5): 739-43.
  • 18. Gonullu H, Aslan M, Karadas S, Kati C, Duran L, Milanlioglu A, et al. Serum prolidase enzyme activity and oxidative stress levels in patients with acute hemorrhagic stroke. Scand J Clin Lab Invest. 2014; 74 (3): 199-205.
  • 19. Hilali N, Vural M, Camuzcuoglu H, Camuzcuoglu A, Aksoy N. Increased prolidase activity and oxidative stress in PCOS. Clin Endocrinol (Oxf). 2013; 79 (1): 105-10.
  • 20. Ito F, Sono Y, Ito T. Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation. Antioxidants (Basel). 2019 25; 8 (3).
  • 21. Kanaley JA, Ji LL. Antioxidant enzyme activity during prolonged exercise in amenorrheic and eumenorrheic athletes. Metabolism. 1991; 40 (1): 88-92.
  • 22. Kander MC, Cui Y, Liu Z. Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J Cell Mol Med. 2017; 21 (5): 1024-1032.
  • 23. Kitchener RL, Grunden AM. Prolidase function in proline metabolism and its medical and biotechnological applications. J Appl Microbiol. 2012; 113 (2): 233-47.
  • 24. Miyazaki H, Oh-ishi S, Ookawara T, Kizaki T, Toshinai K, Ha S, et al. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol. 2001; 84 (1-2): 1-6.
  • 25. Myara I, Charpentier C, Lemonnier A. Optimal conditions for prolidase assay by proline colorimetric determination: application to iminodipeptiduria. Clin Chim Acta. 1982 27; 125 (2): 193-205.
  • 26. Namiduru ES. Prolidase. Bratisl Lek Listy. 2016; 117 (8): 480-5.
  • 27. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95 (2): 351-8.
  • 28. Pepe H, Balci SS, Revan S, Akalin PP, Kurtoğlu F. Comparison of oxidative stress and antioxidant capacity before and after running exercises in both sexes. Gend Med. 2009; 6 (4): 587-95.
  • 29. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017; 2017: 8416763.
  • 30. Sharifi G, Najafabadi AB, Ghashghaei FE. Oxidative stress and total antioxidant capacity in handball players. Adv Biomed Res. 2014 26; 3: 181.
  • 31. Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci. 2008; 1147: 37-52.
  • 32. Tauler P, Aguiló A, Gimeno I, Fuentespina E, Tur JA, Pons A. Response of blood cell antioxidant enzyme defences to antioxidant diet supplementation and to intense exercise. Eur J Nutr. 2006; 45 (4): 187-95.
  • 33. Ugras AF. Effect of high intensity interval training on elite athletes' antioxidant status. Sci Sports 2013; 28 (5): 253-9.
  • 34. Wiecek M, Szymura J, Maciejczyk M, Kantorowicz M, Szygula Z. Anaerobic Exercise-Induced Activation of Antioxidant Enzymes in the Blood of Women and Men. Front Physiol. 2018 27; 9: 1006.