Radyasyon pnömonisinin öngörülmesinde doz volüm histogramları ve TGF-β'nın yeri: Pilot çalışma

AMAÇ Torasik radyoterapi uygulanan küçük hücreli olmayan akciğer kanserli (KHOAK) hastalarda, radyasyon pnömonisi riski ile doz volüm histogramları (DVH) parametreleri ve plazma T G F -βseviyelerinin korelasyonu araştırıldı. GEREÇ VE YÖNTEM Bu çalışmaya üç boyutlu konformal radyoterapi uygulanan 15 KHOAK hastası dahil edildi. Radyoterapi dozu 50-66 Gy arası nda değişmekte olup, medyan doz 60 Gy idi. Olguların tümünde ipsilateral ve kontrlateral akciğerler için DVH'larından elde edilen MLD, V20, V30 değerleri incelendi. TGF-β seviyeleri ELISA yöntemi ile değerlendirildi. BULGULAR Olguların medyan takip süresi 16 ay idi (aralık 6-55). Bu süre içerisinde radyasyon pnömonisi üç olguda saptandı (1.,6. ve 9. aylarda). İpsilateral ve kontrlateral akciğerlerin doz par am e tr el eri karşılaştırıldığında, kontrlateral akciğ erlerin MLD, V20 ve V30 değerlerinin yüksek oluşu pnömoni gelişimi açısından anlamlı bulundu (p < 0,005). TGF-β seviyeleri pnömoni gelişimi için anlamlı bulunmadı. SONUÇ Yüksek kontrlateral akciğer dozunun (MLD, V2 0, V3 0) radyasyon pnömonisi gelifliminde risk faktörü olabileceği gösterilmiştir. TGF-β seviyeleri radyoterapi sonrası erken dönemde pnömoni riskini göstermede faydalı olmamıştır.

The role of dose volume histograms and TGF-&#946; in the prediction of radiation pneumonitis: a pilot study

OBJECTIVES To evaluate the role of some parameters of dose volume histograms (DVH) and plasma TGF-β levels in predicting radiation pneumonitis in non-small cell lung cancer (NSCLC) patients. METHODS Fifteen NSCLC patients treated with 3D conformal radiotherapy were included in the study. Radiotherapy dose was a median 60 Gy. Mean lung dose (MLD), V20 and V30 were calculated from both ipsilateral and contralateral lung DVH. TGF-β levels were studied with ELISA. RESULTS Median follow-up was 16 months (range 10-55). Radiation pneumonitis was diagnosed in three patients (6, 9, 12 months). Dose parameters of ipsi- and contralateral lungs revealed that higher MLD, V20, V30 values in contralateral lung were statistically significant for pneumonitis (p

___

  • 1. Parker SL, Tong T, Bolden S, Wingo PA. Cancer statistics, 1997. CA Cancer J Clin 1997;47(1):5-27.
  • 2. Murphy TP, Casey MT. Determination of operability in candidates who undergo lung resection for bronchogenic carcinoma. Can J Surg 1990;33(6):470-3.
  • 3. Perez C, Azarnia N, Cox J. Sequela of definitive irradiation in the treatment of carcinoma of the lung. In: Motta G, editor. Lung cancer: advanced concepts and present status. Genoa, Italy: G Motta Publishing; 1989.
  • 4. Emami B, Graham MV. Lung. In: Perez CA, Brady LW, editors. Principles and practice of radiation oncology. Philadelphia, New York: Lippincott-Raven; 1998. p. 1181-220.
  • 5. Armstrong JG, Burman C, Leibel S, Fontenla D, Kutcher G, Zelefsky M, et al. Three-dimensional conformal radiation therapy may improve the therapeutic ratio of high dose radiation therapy for lung cancer. Int J Radiat Oncol Biol Phys 1993;26(4):685-9.
  • 6. Martel MK, Ten Haken RK, Hazuka MB, Turrisi AT, Fraass BA, Lichter AS. Dose-volume histogram and 3-D treatment planning evaluation of patients with pneumonitis. Int J Radiat Oncol Biol Phys 1994;28(3):575-81.
  • 7. Langer M, Kijewski P. CCRT (computer controlled radiation therapy) for non-small cell lung cancer: sensitivity of clinical gains to organ tolerance restrictions. Int J Radiat Oncol Biol Phys 1992;22(2):325-32.
  • 8. Marks LB, Munley MT, Bentel GC, Zhou SM, Hollis D, Scarfone C, et al. Physical and biological predictors of changes in whole-lung function following thoracic irradiation. Int J Radiat Oncol Biol Phys 1997;39(3):563-70.
  • 9. Rubin P, Johnston CJ, Williams JP, McDonald S, Finkelstein JN. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 1995;33(1):99-109.
  • 10. Franklin TJ. Therapeutic approaches to organ fibrosis. Int J Biochem Cell Biol 1997;29(1):79-89.
  • 11. Grande JP. Role of transforming growth factor-beta in tissue injury and repair. Proc Soc Exp Biol Med 1997;214(1):27-40.
  • 12. Anscher MS, Kong FM, Jirtle RL. The relevance of transforming growth factor beta 1 in pulmonary injury after radiation therapy. Lung Cancer 1998;19(2):109-20.
  • 13.Rodemann HP, Bamberg M. Cellular basis of radiationinduced fibrosis. Radiother Oncol 1995;35(2):83-90.
  • 14. Hakenjos L, Bamberg M, Rodemann HP. TGF-beta1- mediated alterations of rat lung fibroblast differentiation resulting in the radiation-induced fibrotic phenotype. Int J Radiat Biol 2000;76(4):503-9.
  • 15. Martin M, Lefaix J, Delanian S. TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 2000;47(2):277-90.
  • 16. Travis EL. Organizational response of normal tissues to irradiation. Semin Radiat Oncol 2001;11(3):184- 96.
  • 17. Anscher MS, Murase T, Prescott DM, Marks LB, Reisenbichler H, Bentel GC, et al. Changes in plasma TGF beta levels during pulmonary radiotherapy as a predictor of the risk of developing radiation pneumonitis. Int J Radiat Oncol Biol Phys 1994;30(3):671-6.
  • 18.Cox JD, Stetz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys 1995;31(5):1341-6.
  • 19. Graham MV, Purdy JA, Emami B, Harms W, Bosch W, Lockett MA, et al. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for nonsmall cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 1999;45(2):323-9.
  • 20.Byhardt RW, Martin L, Pajak TF, Shin KH, Emami B, Cox JD. The influence of field size and other treatment factors on pulmonary toxicity following hyperfractionated irradiation for inoperable non-small cell lung cancer (NSCLC)-analysis of a Radiation Therapy Oncology Group (RTOG) protocol. Int J Radiat Oncol Biol Phys 1993;27(3):537-44.
  • 21. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991;21(1):109-22.
  • 22. Kutcher GJ, Burman C. Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method. Int J Radiat Oncol Biol Phys 1989;16(6):1623-30.
  • 23. Kutcher GJ, Burman C, Brewster L, Goitein M, Mohan R. Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys 1991;21(1):137-46.
  • 24. Lyman JT, Wolbarst AB. Optimization of radiation therapy, IV: A dose-volume histogram reduction algorithm. Int J Radiat Oncol Biol Phys 1989;17(2):433-6.
  • 25. Oetzel D, Schraube P, Hensley F, Sroka-Pérez G, Menke M, Flentje M. Estimation of pneumonitis risk in three-dimensional treatment planning using dosevolume histogram analysis. Int J Radiat Oncol Biol Phys 1995;33(2):455-60.
  • 26. Yorke ED, Jackson A, Rosenzweig KE, Merrick SA, Gabrys D, Venkatraman ES, et al. Dose-volume factors contributing to the incidence of radiation pneumonitis in non-small-cell lung cancer patients treated with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 2002;54(2):329-39.
  • 27. Armstrong JG, Zelefsky MJ, Leibel SA, Burman C, Han C, Harrison LB, et al. Strategy for dose escalation using 3-dimensional conformal radiation therapy for lung cancer. Ann Oncol 1995;6(7):693-7.
  • 28. Hernando ML, Marks LB, Bentel GC, Zhou SM, Hollis D, Das SK, et al. Radiation-induced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys 2001;51(3):650-9.
  • 29. Sunyach MP, Falchero L, Pommier P, Perol M, Arpin D, Vincent M, et al. Prospective evaluation of early lung toxicity following three-dimensional conformal radiation therapy in non-small-cell lung cancer: preliminary results. Int J Radiat Oncol Biol Phys 2000;48(2):459-63.
  • 30.Rubin P, Finkelstein J, Shapiro D. Molecular biology mechanisms in the radiation induction of pulmonary injury syndromes: interrelationship between the alveolar macrophage and the septal fibroblast. Int J Radiat Oncol Biol Phys 1992;24(1):93-101.
  • 31. Anscher MS, Kong FM, Andrews K, Clough R, Marks LB, Bentel G, et al. Plasma transforming growth factor beta1 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys 1998;41(5):1029-35.
  • 32. Fan M, Marks LB, Hollis D, Bentel GG, Anscher MS, Sibley G, et al. Can we predict radiation-induced changes in pulmonary function based on the sum of predicted regional dysfunction? J Clin Oncol 2001;19(2):543-50.
  • 33. Anscher MS, Marks LB, Shafman TD, Clough R, Huang H, Tisch A, et al. Risk of long-term complications after TFG-beta1-guided very-high-dose thoracic r a d i o t h e r a p y. Int J Radiat Oncol Biol Phys 2003;56(4):988-95.
  • 34. De Jaeger K, Seppenwoolde Y, Kampinga HH, Boersma LJ, Belderbos JS, Lebesque JV. Significance of plasma transforming growth factor-beta levels in radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004;58(5):1378-87.