Sertleştirilmiş DIN 1.2550 Çeliğinin Frezeleme Performansının Araştırılması

Bu çalışmada, 58 HRC sertliğinde DIN 1.2550 malzemenin karbür kesici uçlarla frezelenme performansı araştırılmıştır. Deneylerden elde edilecek sonuçlar kullanılarak, bu gibi zor kesme şartları için uygun olabilecek frezeleme parametrelerinin tespit edilmesi amaçlanmıştır. Frezeleme işlemleri kuru şartlarda 0.25 mm sabit kesme derinliğinde, 4 farklı kesme hızı (50, 75, 100 ve 125 m/dak) ve 3 farklı ilerleme (0.1, 0.15 ve 0.2 mm/diş) değerinde yapılmıştır. Uygun olan parametre seviyelerinin belirlenmesi için yüzey pürüzlülüğü (Ra), kesici takım aşınması ve oluşan talaşlar değerlendirilmiştir. Ra sonuçların istatistiksel olarak değerlendirilebilmesi için varyans analizi yapılmıştır. İlerlemenin artması yüzey pürüzlülüğünü arttırmış ve yüksek kesme hızında kesici takım aşınması artmıştır. Daha az yüzey pürüzlülüğü için düşük kesme hızı ve ilerleme parametrelerinin uygun olacağı belirlenmiştir. En düşük 100 m/dak kesme hızı değerinde 0,1 mm/diş ilerlemede 0,19 µm olarak ölçülmüştür.

Investigation of the Milling Performance of Hardened DIN 1.2550 Steel

In this study, the milling performance of DIN 1.2550 material with a hardness of 58 HRC with carbide inserts was investigated. By using the results obtained from the experiments, it is aimed to determine the milling parameters that may be suitable for such difficult cutting conditions. Milling operations were carried out in dry conditions at a constant cutting depth of 0.25 mm, 4 different cutting speeds (50, 75, 100 and 125 m/min) and 3 different feeds (0.1, 0.15 and 0.2 mm/tooth). Surface roughness (Ra), cutting tool wear and chips were evaluated to determine the appropriate parameter levels. Analysis of variance was performed in order to evaluate the Ra results statistically. The increase in feed increased the surface roughness and the wear of the cutting tool increased at high cutting speed. It was determined that low cutting speed and feed parameters would be appropriate for less surface roughness. It was measured as 0.19 µm at 0.1 mm/tooth feed at the lowest cutting speed of 100 m/min.

___

  • [1] T. Özel, Y. Karpat, L. Figueira, and J. P. Davim, “Modelling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts,” J. Mater. Process. Technol., vol. 189, no. 1–3, pp. 192–198, Jul. 2007, doi: 10.1016/j.jmatprotec.2007.01.021.
  • [2] H. Chandrasekaran and R. M’Saoubi, “Improved machinability in hard milling and strategies for steel development,” CIRP Ann. -Manuf. Technol., vol. 55, no. 1, pp. 93–96, 2006, doi: 10.1016/S0007-8506(07)60374-6.
  • [3] A. Iqbal, H. Ning, I. Khan, L. Liang, and N. U.Dar, “Modeling the effects of cutting parameters in MQL-employed finish hardmilling process using D-optimal method,” J. Mater. Process. Technol., vol. 199, no. 1, pp. 379–390, Apr. 2008, doi: 10.1016/j.jmatprotec.2007.08.029.
  • [4] S. Cetinkaya and A. Kacal, “Investigation of the heat treatment effect in milling of K390 powder metallurgical steel,” Kovove Materialy-Metallic Materials. vol. 52, pp. 209–218, 2014, doi: 10.4149/km.
  • [5] A. Kaçal, “Sertleştirilmiş EN X210CrW12 Soğuk İş Takım Çeliğinin Karbür Kesici İle Frezeleme Performansının Araştırılması,” IMOFE VIII, Antalya, Türkiye, 2019.
  • [6] I. Scandiffio, A. E. Diniz, and A. F. de Souza,“The influence of tool-surface contact on tool life and surface roughness when milling freeform geometries in hardened steel,” Int. J. Adv. Manuf. Technol., vol. 92, no. 1–4, pp. 615–626, 2017, doi: 10.1007/s00170-017-0093-8.
  • [7] I. Scandiffio, A. E. Diniz, and A. F. de Souza,“Evaluating surface roughness, tool life, and machining force when milling free-form shapes on hardened AISI D6 steel,” Int. J. Adv. Manuf. Technol., vol. 82, no. 9–12, pp. 2075–2086, 2016, doi: 10.1007/s00170-015-7525-0.
  • [8] H. Kull Neto, A. E. Diniz, and R. Pederiva, “Tool life and surface roughness in the milling of curved hardened-steel surfaces,” Int. J. Adv. Manuf. Technol., vol. 87, no. 9–12, pp. 2983–2995, 2016, doi: 10.1007/s00170-016-8640-2.
  • [9] I. da C. Castanhera and A. E. Diniz, “High Speed Milling of Hardened Steel Convex Surface,” Procedia Manuf., vol. 5, pp. 220–231, 2016, doi: 10.1016/j.promfg.2016.08.020.
  • [10] V. N. Gaitonde, S. R. Karnik, C. H. A. Maciel, J. C. Rubio and A. M. Abroa, “Machinability Evaluation in Hard Milling of AISI D2 Steel” Materials Research, vol. 19, no. 2, pp. 360–369, 2016, doi: 10.1590/1980-5373-MR-2015-0263
  • [11] B. Wang and Z. Liu, “Cutting performance of solid ceramic end milling tools in machining hardened AISI H13 steel,” Int. J. Refract. Met. Hard Mater., vol. 55, pp. 24–32, 2016, doi: 10.1016/j.ijrmhm.2015.11.004.
  • [12] X. Cui, X. Zheng, and J. Guo, “Optimization of cutting conditions in hard milling with the performance of cemented carbide tool material considered,” Int. J. Adv. Manuf. Technol., vol. 96, no. 5–8, pp. 2161–2173, 2018, doi: 10.1007/s00170-018-1782-7.
  • [13] Á. R. Machado and A. E. Diniz, “Tool wear analysis in the machining of hardened steels,” Int. J. Adv. Manuf. Technol., vol. 92, no. 9–12, pp. 4095–4109, 2017, doi: 10.1007/s00170-017-0455-2.
  • [14] H. Hassanpour, M. H. Sadeghi, A. Rasti, and S. Shajari, “Investigation of surface roughness, microhardness and white layer thickness in hard milling of AISI 4340 using minimum quantity lubrication,” J. Clean. Prod., vol. 120, pp. 124–134, 2016, doi: 10.1016/j.jclepro.2015.12.091.
  • [15] A. Kaçal and F. Yildirim, “High speed hard turning of AISI S1 (60WCrV8) cold work tool steel,” Acta Polytech. Hungarica, vol. 10, no. 8, 2013.
  • [16] M. Günay, “Modeling and multiple optimization in face milling of hardfacing welding applied steel: Force, roughness, power” Proc Ins ec Eng, Part C: J Mech Eng Sci,2022, doi:10.1177/09544062211065998
  • [17] X. Cui, F. Jiao, B. Zhao, and J. Guo, “A review of high-speed intermittent cutting of hardened steel,” Int. J. Adv. Manuf. Technol., vol. 93, no. 9–12, pp. 3837–3846, 2017, doi: 10.1007/s00170-017-0815-y.
  • [18] S. Debnath, M. M. Reddy, and Q. S. Yi, “Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method,” Meas. J. Int. Meas. Confed., vol. 78, pp. 111–119, 2016, doi: 10.1016/j.measurement.2015.09.011