Pyroelektrik Isı Sensörü Ölçümü İçin Metal-İnce Film-Metal Cihaz Yapısının Hazırlanması

Bu çalışmada, nanometre ölçeğinde üretilen organik Langmuir-Blodgett (LB) ince film malzemesinin piroelektrik özellikleri incelenmiştir. Su yüzeyinde yüzen organik moleküllerin katı yüzeye aktarılmasıyla elde edilen LB ince filmler simetrik olmayan bir yapıda üretilmiştir. Simetrik olmayan LB film yapısını imal etmek için sterik asit ve eikosilamin molekülleri seçildi. Bu yapı, piroelektrik ve elektriksel (C-f ve C-tan δ) ölçümlerini araştırmak için kullanıldı. Piroelektrik figüre of merit (FOM) değeri piroelektrik sabiti, dielektrik sabiti değeri ve dielektrik kaybı kullanılarak hesaplandı. Sterik asit/eikosilamin LB filmi için FOM değeri 0.530 Cm-2K-1 olarak elde edilmiştir. .

Preparation of Metal-Thin Film-Metal Device Structure for Pyroelectric Heat Sensor Measurement

In this study, the pyroelectric properties of organic Langmuir-Blodgett (LB) thin film material produced at the nanometer scale were investigated. LB thin films obtained by transferring organic molecules floating on the water surface to the solid surface were produced in an unsymmetrical structure. Steric acid and eicosylamine molecules were selected to fabricate unsymmetrical LB film structure. This structure was used to investigate the pyroelectric and electrical (C-f and C-tan δ) measurements. The pyroelectric figure of merit (FOM) was determined using pyroelectric constant, the dielectric constant value and dielectric loss. The value of FOM for the stearic acid/eicosylamine LB film was determined as 0.530 Cm-2K-1 .

___

  • [1] R. Çapan, “Organic pyroelectric materials for device applications,” Balıkesir University Journal of Science (BAÜ FBE Dergisi), vol. 12, no. 1, pp. 75-90, 2010.
  • [2] Zhuo Han, Sana Ullah, Guangping Zheng, Hua bing Yin, Jinlin Zhao, Shiduo Cheng, Xianying Wang, Junhe Yang, “The thermal-to-electrical energy conversion in (Bi0.5Na0.5)0.94Ba0.06TiO3/graphene oxide heterogeneous structures,” Ceramics International, vol. 45, no. 18, pp.24493-24499, 2019.
  • [3] M. B. Biddle, S. E. Rickert, “Opportunities for Langmuir-Blodgett-films in piezoelectric and pyroelectric devices,” Ferroelectrics, vol. 76, no. 1-2, 133, 1987.
  • [4] S. G. Porter, “A brief guide to pyroelectric detectors,” Ferroelectrics, vol. 33, no. 1-4, pp. 193-206, 1981.
  • [5] H. Huang, Z. Tianshu, J. T. Oh, P. Hing, “Effect of a-site substitution of calcium on Zr-rich lead zirconate titanate,” Ferroelectrics, vol. 274, pp. 55–65, 2002.
  • [6] B. Ploss, B. Ploss, F. G. Shin, H. L. W. Chan, and C. L. Choy, “Pyroelectric or piezoelectric compensated ferroelectric composites,” Applied Physics Letters, vol. 76, no. 19, pp. 2776-2778, 2000.
  • [7] D. Lacey, S. Holder, W H A. Majid, R. Capan, T. Richardson, “High Pyroelectric Sensitivity in Alternate Layer LangmuirBlodgett Superlatices,” Materials Science & Engineering C, vol. 3, pp. 197-203, 1995.
  • [8] R. Capan, S.V. Batty, T. Richardson, D. Lacey, S, J. Holder, “Optimisation of The Pyroelectric Figure of Merit of Polysiloxane/amine Superlattices,” Thin Solid Films, vol. 284-285, pp. 915-918, 1996.
  • [9] R. Çapan, A.K. Ray, T. H. Richardson, A.K. Hassan and F. Davis, “Pyroelectric and Conduction Properties of Ztype Calix [4] acid Langmuir-Blodgett Films,” J. of Nanoscience and Nanotechnology, vol: 5, no: 11, pp. 1910-1914, 2005.
  • [10]R. Capan, T. Richardson, J. Tsibouklis, “A Study of Pyroelectric and Dielectric Characterisation Using Alternate Layer Langmuir-Blodgett Films,” Colloids & Surfaces A, vol. 198-200, pp. 835-841, 2002.
  • [11]P. Oliviere, J. Yarwood, T. H. Richardson, “Pyroelectric Activity in Calix[8]arene/Amine Langmuir Blodgett Films:  New Insights into the Mechanism of Polarization Variation with Temperature,” Langmuir, vol. 19, no. 1, pp. 63- 71, 2003.
  • [12]D. Lacey, T. Richardson, F. Davis, and R. Capan, “Pyroelectric Superlattices Based on Polysiloxane / Calix[n]arene Alternate LB Films,” Materials Science & Engineering C, vol. 8-9 pp. 377-384, 1999.
  • [13]R. Çapan, T. Richardson and D. Lacey, “Pyroelectric Figure of Merit for a Heterogeneous Alternate Layer LangmuirBlodgett Film System,” Thin Solid Films, vol. 415, no. 1-2, pp. 236-241, 2002.
  • [14]R. Çapan, “Langmuir-Blodgett (LB) Film Technique in Nanotechnology,” Süleyman Demirel University Journal of Science, vol. 8, no. 2, pp. 17-22, 2004.
  • [15]L. Tian, J. Sun, Y. Li, X. Hua Zhang, “Pyroelectric response in the Langmuir– Blodgett fabricated artificial polymer multilayers,” Modern Physics Letters B, vol. 33, no. 11, pp. 1950137, 2019.
  • [16]A. Kausar, “Survey on Langmuir–Blodgett Films of Polymer and Polymeric Composite,” vol. 56, no. 9, pp. 932-945, 2017.
  • [17]R. Çapan, İ. Başaran, T.H. Richardson, D. Lacey, “A Theoretical Model for The Pyroelectric Response in Langmuir-Blodgett Films,” Materials Science & Engineering C, vol. 22, no. 2, pp. 245-249, 2002.
  • [18]R. Çapan, İ. Alp, T. H. Richardson, F. Davis,” Pyroelectric Figure of Merit for a calix [4] acid/amine alternate layer LangmuirBlodgett Film,”, Materials Letters, vol.59, pp. 1945-1948, 2005.
  • [19]R. Çapan, T. H. Richardson, “Pyroelectric effect in a mixed polysiloxane/eicosylamine Langmuir-Blodgett Thin Film,” Materials Letters, vol. 25, pp. 3131-3135, 2004.
  • [20]D. Lacey, T. Richardson, F. Davis, and R. Capan, “Pyroelectric Superlattices Based on Polysiloxane / Calix[n]arene Alternate LB Films,” Materials Science & Engineering C, vol. 8-9 pp. 377-384, 1999.
  • [21]R. Çapan, “Pyroelectric and Dielectric Characterisation of Alternate Layer LangmuirBlodgett Films Incorporating Ions,” Materials Letters, vol. 61, no. 4-5, pp. 1231-1234, 2007.
  • [22]R. Çapan, T. H. Richardson, D. Lacey, “Pyroelectric Effect in Langmuir-Blodgett Films Incorporating Ions,” Thin Solid Films, vol. 468, no. 1-2, pp. 262-267, 2004.
  • [23]R. Capan, T. Richardson, D. Lacey, “Cd 2+ and Mn 2+ Incorporation in Copolysiloxane/Eicosylamine Alternate Layer LB Films:Influence on Pyroelectric Activity,” Thin Solid Films, vol: 327-329, pp. 369-372, 1998.