Geçirimli Beton Kaplamada Doğal Agreganın Taban Külü ile Kısmi ve Tam İkamesinin Etkileri

Büzülme, dayanıklılığın ana kriterlerinden biridir. Betonun, özellikle de geçirimli betonun (PC) uzun süreçte hizmet verebilmesi için kontrol edilmesi gereklidir. Bu çalışma, doğal agreganın (NA) kısmi ve tam ikamesi olarak Lübnan kaynaklı belediye katı atık yakma taban külü (BA) içeren geçirgen beton kaplamanın (PCP) otojen büzülmesini ve genleşmesini incelemektedir. Doğal agreganınkine yakın parçacık boyutlarında, %0, 25, 50, 75 ve %100 BA (hacimce) olmak üzere çeşitli ikame oranlarına sahip beş ayrı geçirimli beton karışımı üretilmiştir. Çalışmada geçirimli betonların basınç dayanımı ve toplam gözenekliliği incelenmiş, bunlar arasındaki korelasyonlar analiz edilmiştir. Sonuçlar, BA içeriğindeki artışın, PC karışımlarının otojen büzülmesini, genleşmesini ve basınç dayanımını azalttığını göstermiştir. Bununla birlikte, BA içeriğindeki artış betonların toplam gözenekliliğini artırmıştır. Sonuçlar ayrıca çeşitli kürleme günlerinde basınç dayanımı ile otojen büzülme, genleşme ve porozite arasında ilişki olduğunu da ortaya koymuştur. Genleşme ile toplam porozite arasında ve basınç dayanımı ile toplam porozite arasında negatif bir korelasyon olduğu gösterilmiştir.

Effect of Partial and Full Replacements of Natural Aggregate with Bottom Ash in Pervious Concrete Pavement

Shrinkage is a main criterion of durability. Its control is essential for the long-term serviceability of concrete, especially pervious concrete (PC). This study examines the autogenous shrinkage and expansion of pervious concrete pavement (PCP), including municipal solid waste incineration bottom ash (BA) from a Lebanon source as a partial and full replacement of natural aggregate (NA). Five pervious concrete mixes were produced with various BA replacement ratios of 0, 25, 50, 75, and 100% BA (by volume), with comparable particle sizes to those of the natural aggregate. The study also investigates the compressive strength and total porosity of pervious mixes and analyzes the correlations between them. Results showed that the increase in BA content decreased the autogenous shrinkage, expansion, and compressive strength of PC mixes. However, it increases the total porosity of the mix. Results also present the correlations between compressive strength and autogenous shrinkage, expansion, and porosity at various curing days. A negative correlation was shown between expansion and total porosity, as well as between compressive strength and total porosity.

___

  • P. D. Tennis, M. L. Leming and D. J. Akers, Pervious concrete pavements (No. PCA Serial No. 2828). Skokie, IL: Portland Cement Association, 2004.
  • N. Neithalath, J. Weiss and J. Olek, “Characterizing enhanced porosity concrete using electrical impedance to predict acoustic and hydraulic performance,” Cem. Concr. Res., vol. 36, no. 11, 2074-2085, Nov. 2006.
  • J. X. Lu, X. Yan, P. He and C. S. Poon, “Sustainable design of pervious concrete using waste glass and recycled concrete aggregate,” J. Clean. Prod., vol. 234, 1102-1112, Oct. 2019.
  • American Concrete Institute. Concrete Technology, ACI CT-13, 2013.
  • O. Deo and N. Neithalath, “Compressive response of pervious concretes proportioned for desired porosities,” Constr. Build. Mater., vol. 25, no. 11, 4181-4189, Nov. 2011.
  • O. Deo and N. Neithalath, “Compressive behavior of pervious concretes and a quantification of the influence of random pore structure features,” Mater. Sci. Eng. A, vol. 528, no. 1, 402-412, Nov. 2010.
  • R. Zhong and K. Wille, “Material design and characterization of high performance pervious concrete,” Constr. Build. Mater., vol. 98, 51-60, Nov. 2015.
  • S. Arifin, “Influence of Ash and Coconut Shell Against Compressive Strength and Permeability Characteristics of Pervious Concrete,” TURCOMAT, vol. 12, no. 3, 4129-4138, Apr. 2021.
  • V. Yamin, D. G. S. Nivedha, K. Cheran and G. Indhumathi, “Structural behaviour of pervious concrete by using synthetic glass fibre as reinforcement,” TURCOMAT, vol. 12, no. 7, 582-588, Apr. 2021.
  • K. Cheran, “Strengthening of permeable concrete using bitumen coated bamboo rods,” TURCOMAT, vol. 12, no. 7, 600-607, Apr. 2021.
  • Y. Mao, J. Liu and C. Shi, “Autogenous shrinkage and drying shrinkage of recycled aggregate concrete: A review,” J. Clean. Prod., vol. 295, 126435, May 2021.
  • H. Ghanem, M. Machaka, J. Khatib, A. Elkordi and O. Baalbaki, “Effect of partial replacement of cement by MSWIBA on the properties of mortar,” AJCE, vol. 37, no. 2, 82-89, June 2019.
  • M. H. Wu, C. L., Lin, W. C. Huang and J. W. Chen, “Characteristics of pervious concrete using incineration bottom ash in place of sandstone graded material,” Constr. Build. Mater., vol. 111, 618-624, May 2016.
  • H. Ghanem, J. Khatib, and A. Elkordi, “Effect of partial replacement of sand by mswi-ba on the properties of mortar,” BAU Journal-Science and Technology, vol. 1, no. 2, 4, June 2020.
  • L. Wu, N. Farzadnia, C. Shi, Z. Zhang and H. Wang, “Autogenous shrinkage of high performance concrete: A review,” Constr. Build. Mater., vol. 149, 62-75, Sept. 2017.
  • H. Chen, M. Wyrzykowski, K. Scrivener and P. Lura, “Prediction of self-desiccation in low water-to-cement ratio pastes based on pore structure evolution,” Cem. Concr. Res., vol. 49, 38-47, July 2013.
  • J. Khatib, R. Ramadan, H. Ghanem and A. Elkordi, “Volume Stability of Cement Paste Containing Limestone Fines,” Buildings, vol. 11, no. 8, 366, Aug. 2021.
  • R. S. Ravindrarajah, and A. Yukari, Environmentally friendly pervious concrete for sustainable construction. In 35th Conference on Our World in Concrete & Structures, Singapore August, 2010, pp. 25 - 27.
  • G. Xu, W. Shen, X. Huo, Z. Yang, J. Wang, W. Zhang and X. Ji, “Investigation on the properties of porous concrete as road base material,” Constr. Build. Mater., vol. 158, 141-148, Jan. 2018.
  • H. Fujiwara, R. Tomita, T. Okamoto, A. Dozono, and A. Obatake, “Properties of high-strength porous concrete,” Spec. Publ., vol. 179, 173-188, Jan. 1998.
  • ASTM C 192. Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory; ASTM International: West Conshohocken, PA, USA, 2014.
  • ASTM International. ASTM C39: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, 2014.
  • ASTM International. ASTM C1754: Standard Test Method for Density and Void Content of Hardened Pervious Concrete, 2012.
  • D. Youssef, “The use of lightweight sand for internal curing and its effect on performance of HPC used for concrete infrastructures,” Ph. D., Université de Sherbrooke, 2013.
  • C. Rößler, D. D. Bui, and H. M. Ludwig, “Rice husk ash as both pozzolanic admixture and internal curing agent in ultra-high performance concrete,” Cem. Concr. Compos., vol. 53, 270-278, Oct. 2014.
  • P. Shen, H. Zheng, D. Xuan, J. X. Lu and C. S. Poon, “Feasible use of municipal solid waste incineration bottom ash in ultra-high performance concrete,” Cem. Concr. Compos., vol. 114, 103814, Nov. 2020.
  • E. Ghafari, S. A. Ghahari, H. Costa, E. Júlio, A. Portugal, and L. Durães, “Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete,” Constr. Build. Mater., vol. 127, 43-48, Nov. 2016.
  • M. H. Zhang, C. T. Tam and M. P. Leow, “Effect of water-to-cementitious materials ratio and silica fume on the autogenous shrinkage of concrete,” Cem. Concr. Res., vol. 33, no. 10, 1687-1694, Oct. 2003.
  • A. Gonzalez-Corominas and M. Etxeberria, “Effects of using recycled concrete aggregates on the shrinkage of high performance concrete.” Constr. Build. Mater., vol. 115, 32-41, July 2016.
  • J. Kerby, “Internal curing using lightweight fine aggregate,” Civil Engineering Undergraduate Honors Theses, 2013, Retrieved from https://scholarworks.uark.edu/cveguht/3.
  • S. Multon and F. Toutlemonde, “Effect of moisture conditions and transfers on alkali silica reaction damaged structures,” Cem. Concr. Res., vol. 40, no. 6, 924-934, June 2010.
  • B. S. Hamad, G. R. Khoury and H Khatib, “Petrographic, mechanical and chemical properties of major coarse aggregate resources in Lebanon, eastern Mediterranean,” Bull. Eng. Geol. Environ., vol. 59, 297-305, Feb. 2001.
  • D. Xuan, P. Tang and C. S. Poon, “Effect of casting methods and SCMs on properties of mortars prepared with fine MSW incineration bottom ash,” Constr. Build. Mater., vol. 167, 890-898, Apr. 2018.
  • D. Xuan and C. S. Poon, “Removal of metallic Al and Al/Zn alloys in MSWI bottom ash by alkaline treatment,” J. Hazard. Mater., vol. 344, 73-80, Feb. 2018.
  • M. A. Tijani, W. O. Ajagbe, A. A. Ganiyu, & O. A. Agbede, “Effect of aggregate type on properties of pervious concrete,” J. Eng. Technol., vol. 4, no.1, 37-46, Apr. 2019.
  • A. Abdulmatin, W. Tangchirapat and C. Jaturapitakkul, “An investigation of bottom ash as a pozzolanic material,” Constr. Build. Mater., vol. 186, 155-162, Oct. 2018.
  • N. Saikia, G. Mertens, K. Van Balen, J. , Elsen, T. Van Gerven and C. Vandecasteele, “Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in cement mortar,” Constr. Build. Mater., vol. 96, 76-85, Oct. 2015.
  • T. P. Huynh and S. H. Ngo, “Waste incineration bottom ash as a fine aggregate in mortar: An assessment of engineering properties, durability, and microstructure,” J. Build. Eng., vol. 52, 104446, July 2022.
  • G. F. Sandoval, I. Galobardes, N. Schwantes-Cezario, A. Campos and B. M. Toralles, “Correlation between permeability and porosity for pervious concrete (PC),” Dyna, vol. 86, no. 209, 151-159, Apr./June 2019.
  • C. Lian, Y. Zhuge and S. Beecham, “The relationship between porosity and strength for porous concrete.,” Constr. Build. Mater., vol. 25, no. 11, 4294-4298, Nov. 2011.