Metisiline dirençli stafilokok suşlarında tigesiklin etkinliğinin araştırılması

Amaç: Amaç Metisiline dirençli Staphylococcus aureus MRSA ve metisiline dirençli koagülaz negatif stafilokoklar MRKNS dünya genelinde önemli enfeksiyon etkenleridir. Vankomisin ve diğer glikopeptit antibiyotikler MRSA ve MRKNS ile oluşan enfeksiyonların tedavisinde kullanılan belli başlı antibiyotiklerdir. Metisiline dirençli stafilokok suşlarının yüksek prevelansı, vankomisin kullanımında artışa yol açmıştır. Bu durum ise metisiline dirençli stafiloklarda glikopeptitlere duyarlılığın azalmasına neden olmuştur. Vankomisine duyarlılığı azalmış olan MRSA suşlarının yol açtığı enfeksiyonların tedavi seçenekleri sınırlıdır. Tigesiklin MRSA ve/veya MRKNS’ nin yol açtığı enfeksiyonların antimikrobiyal tedavileri için alternatif olarak göz önünde tutulmalıdır. Bu çalışmanın amacı tigesiklinin çeşitli kliniklerden izole edilen metisiline dirençli stafilokok suşlarına karşı in vitro antimikrobiyal aktivitesinin belirlenmesidir. Yöntem: Stafilokok suşları Ocak ve Aralık 2010 tarihleri arasında Konya Eğitim ve Araştırma Hastanesi Mikrobiyoloji Laboratuvarında izole edilmiştir. İzole edilen suşlar konvansiyonel metodlar ve tam otomatik bakteri identifikasyon ve duyarlılık sisteminin Phoenix 100, BD, Sparks, USA her ikisi kullanılarak tanımlanmıştır. Metisilin direnci disk difüzyon yöntemi oksasilin 1 µg ve sefoksitin 30 µg diskleri Klinik ve Laboratuvar Standartları Enstitüsü’nün Clinical and Laboratory Standards Institute-CLSI talimatlarına göre uygulanmış ve değerlendirilmiştir. İzole edilen suşlar için tigesiklinin minimum inhibitör konsantrasyon MİK değerleri E-test metodu bio-Merieux Marcy l’Etoile, France ile belirlenmiştir. Bulgular: Seksen beş dirençli stafilokok suşunda 35 %41 ’i Staphylococcus aureus ve 50 %59 ’si koagülaz negatif stafilokok olarak tanımlanmıştır. Otuz beş MRSA izolatı için tigesiklinin MİK değerleri şu şekilde bulunmuştur: MİK50: 0,094 µg/ml, MİK90: 0,5 µg/ml, 50 MRKNS izolatı için ise MİK50: 0,047 µg/ml, MİK90: 0,25. Bütün izolatların tamamı tigesikline duyarlı %100 bulunmuştur. Sonuç: Bu çalışmanın sonuçları tigesiklinin MRSA ve MRKNS izolatlarının her ikisine karşı etkili in vitro antimikrobiyal aktiviteye sahip olduğunu göstermektedir. Tigesiklin, dirençli MRSA ve MRKNS etkenlerinin yol açtığı enfeksiyonların tedavisinde alternatif antibiyotiklerin tamamının dirençli olduğu durumlarda son seçenek olarak tercih edilebilir.

Investigation of activity of tigecycline against methicillin-resistant staphylococci strains

Objective: Methicillin-resistant Staphylococcus aureus MRSA and Methicillin-resistant coagulase negative staphylococci MRCNS are important cause of infections worldwide. Vancomycin and other glycopeptide antibiotics are mainstay of therapy for infections caused by MRSA and MRCNS. High prevalence of methicillin resistant staphylococci strains led to increased use of vancomycin. This situation caused to reduction of glycopeptide susceptibility in methicillinresistant staphylococci. Treatment options of infections due to MRSA with reduced susceptibility to vancomycin are limited. Tigecycline should be take into consideration as an antimicobial therapeutic alternative for infecitons caused by MRSA and/or MRCNS. The aim of this study was to determine in vitro antimicrobial activity of tigecycline against methicillin-resistant staphylococci strains isolated from various clinical specimens. Method: Staphylococcus strains isolated at the Microbiology Laboratory of Konya Education and Research Hospital in between January and December in 2010. The isolated strains were identified by using both conventional methods and fully automated bacteria identification and susceptibility system Phoenix 100, BD, Sparks, USA . Methicillin resistance was determined and evaluated according to Clinical and Laboratory Standards Institute CLSI instrucions by using disc diffusion method oxacillin 1 µg and cefoxitin 30 µg discs Minimum inhibitory concentration MIC values of tigecycline for isolated strains were detected with E-test method bio-Merieux Marcy l’Etoile, France . Results: Of all the eighty five methicillin-resistant staphylococci strains 35 41% were identified as Staphylococcus aureus and 50 59% coagulase negative staphylococci. MIC values of tigecycline for the 35 MRSA isolates were MIC50: 0.094 µg/ml, MIC90: 0.5 µg/ml and for the 50 MRCNS isolates were MIC50: 0.047 µg/ml, MIC90: 0.25 µg/ml. All isolates 100% were found to be sensitive to tigecycline. Conclusion: Results of this study showed that tigecycline was effective in vitro antimicrobial activity against both MRSA and MRCNS isolates. Tigecycline may be preferred as a last choice in the treatment of resistant infections due to the MRSA and MRCNS that alternative antibiotics were all resistant.

___

  • Arslan P. Enteral beslenme ürünleri. In: Sağlık Bakanlığı. Gıda Denetçi Eğitim Materyali. 1. Basım. Ankara: Aydoğdu Ofset Baskı, 1998: 515-6.
  • Özdener H, Çelik C. Vitamin C’nin metabolik ve klinik önemi, yeni yaklaşımlar. T Klin Tıp Bilimleri, ; 13: 200-10. Okiei W, Ogunlesi M, Azeez L, Obakachi V, Osunsanmi M, Nkenckor G. The voltammetric and titrimetric determination of ascorbic acid levels in tropical fruit samples. Int J Electrochem Sci, 2009; : 276-87.
  • Sultan SM, Abdennabi AM, Suliman FE. Flow injection colorimetric method for the assay of vitamin C in drug formulations using tris, 1-10- phenanthroline-iron (III) complex as an oxidant in sulfuric acid media. Talanta, 1994; 41 (1): 30.
  • Sultan SM, Walmsley AD. Simultaneous kinetic method for the determination of vitamin C, citrate and oxalate employing the kalman fitler. Analyst, ; 122: 1601-4.
  • Danielczuk J, Pietrzykowski R, Zieliński W. Comparative study of the enzymatic method for determination of vitamin C with routine methods according to ISO. Pol J Food Nutr Sci, 2004; 13/54 (1): 41-6.
  • Bajaj KL, Kaur G. Spectrophotometric determina- tion of L-ascorbic acid in vegetables and fruits. Anaylst, 1981; 106: 117-20.
  • Hernanz A. High-performance liquid chromatog- raphic determination of ascorbic acid in serum using paired-ion chromatography and UV spectrop- hotometric detection. J Clin Chem Clin Biochem, ; 26 (7): 459-61.
  • Ertaş E. Yüksek basınçlı sıvı kromatografi tekniği uygulamaları eğitim notları. Gebze: TÜBİTAK MAM Gıda Bilimi ve Teknolojisi Araştırma Enstitüsü. ; 1-34.
  • Speek AJ, Schrijver J, Schreurs WHP. Fluorometric determination of total vitamin C in whole blood by high-performance liquid chromotography with pre-coloumn derivatization. J Chromatogr B, 1984; (1): 53-60.
  • Heudi O, Kilinc T, Fontannaz P. Separation of water-soluble vitamins by reversed-phase high performance liquid chromatography with ultra- violet detection: application to polyvitaminated premixes. J Chromatogr A, 2005; 1070 (1-2): 49-56.
  • Gazdik Z, Zitka O, Petrlova J, Adam V, Zehnalek J, Horna A, et al. Determination of vitamin C (as- corbic acid) using high performance liquid chroma- tography coupled with electrochemical detection. Sensors, 2008; 8: 7097-112.
  • Kaynar P, Canbolat M, Bingöl M, Polat A. Enteral beslenme ürünlerindeki vitamin B2 miktarının HPLC ile belirlenmesi. Türk Hij Den Biyol Derg, 2007; 64 (3): 5-9.
  • Friel JK, Bessie JC, Belkhode SL, Edgecombe C, Steele-Rodway M, Downton G, et al. Thiamine, riboflavin, pyridoxine and vitamin C status in premature infants receiving parenteral and enteral nutrition. J Pediatr Gastr and Nutr, 2001; : 64-9.
  • Gökmen V, Acar J. HPLC ile gıdalardaki toplam vitamin C miktarının saptanması. Gıda San Derg, ; 39: 19-20. Behrens WA, Madere R. Ascorbic and dehydroascorbic acid content of infant formula. J Food Compos and Anal, 1989; 2 (1): 48-52.
  • Fontannaz P, Kilinç T, Heudi O. HPLC-UV determination of total vitamin C in a wide range of fortified food products. Food Chem, 2006; 94 (4): 626-31.
  • Odriozola-Serrano I, Hernández-Jover T, Martin- Belloso O. Comparative evaluation of UV-HPLC methods and reducing agents to determine vitamin C in fruits. Food Chem, 2007; 105 (3): 1151-8.
  • Sanchez-Mata FC, Camara-Hurtado M, Diez- Marques C, Torija-Isasa ME. Comparison of high-performance liquid chromatography and spectrofluorimetry for vitamin C analysis of green beans (Phaseolus vulgaris L.). Eur Food Res Techn, ; 210 (3): 220-5.
  • Vinci G, Botrè F, Mele G, Ruggieri G. Ascorbic acid in exotic fruits: a liquid chromatographic investigation. Food Chem, 1995; 53: 211-4.
  • Levent B, Sezen F, Güleşen RK ve UEPLA Çalışma Grubu. Ulusal enterik patojenler laboratuvar sürveyans ağı (UEPLA): 2007-2008 yıllarına ait suşların değerlendirilmesi. Türk Hij Den Biyol Derg, 2009; 66 (2) (Ek 2): 25-7.
  • Cohen JI, Bartlett JA, Corey GR. Extra-intestinal manifestations of Salmonella infections. Medicine (Baltimore), 1987; 66 (5): 349-88.
  • Nakaya Y, Shiota S, Sakamoto K, Iwase A, Aoki S, Matsuoka R, et al. Double infection with Giardia lamblia and Salmonella paratyphi A associated with acute renal failure. Intern Med, 1998; 37 (5): 92.
  • D’Cruz S, Kochhar S, Chauhan S, Gupta V. Isolation of Salmonella paratyphi A from renal abscess. Indian J Pathol Micr, 2009; 52 (1): 117-9.
  • Abbott SL, Portoni BA, Janda JM. Urinary tract infections associated with nontyphoidal Salmonella serogroups. J Clin Microbiol, 1999; 37 (12): 8.
  • Wuthe HH, Aleksić S, Podschun R, Scheer-Sievers A. Urinary tract infection due to a mucoid (M) form of Salmonella. A new transformation from M form into T1 form. Zentralbi Bakteriol, 1992; (1): 74-9. Anonymous.
  • Antimicrobial Susceptibility Testing; Twentieth İnformational Supplement. Clinical and Laboratory Standards Institute, 2010. Standards for
  • Lee HJ, Pyo JW, Choi EH, Ha IS, Cheong HI, Choi Y, et al. Isolation of adenovirus type 7 from the urine of children with acute hemorrhagic cystitis. Pediatr Infect Dis J, 1996; 15 (7): 633-4.
  • Manikandan R, Kumar S, Dorairajan LN. Hemorrhagic cystitis: a challenge to the urologist. Indian J Urol, 2010; 26 (2): 159-66.
  • Arad E, Naschitz J, Yeshurun D. Hemorrhagic cystitis as a presenting symtom of acute infection with Salmonella typhi. Harefuah, 1996; 130 (12): 6.
  • Aydemir C, Tanır G, Akın A, Tanır G, Yüksek M, Lüleci T, et al. Salmonella paratyphi B’nin neden olduğu bir akut hemorajik sistit olgusu. Türk Pediatr Ars, 2003; 38 (3): 1-3.
  • Al-Otaibi FE. Isolation of Salmonella paratyphi A from a patient with nephrolithiases. Saudi Med J, McLarty E, Dance D. Adverse effects of being a “healthy carrier”. Lancet, 1999; 353 (9171): 7.
  • Leung AKC, Kao CP, Robson WLM. Urinary tract infection due to Salmonella stanleyville in an otherwise healthy child. J Natl Med Assoc, 2005; (2): 281-3.
  • Tena D, González-Praetorius A, Bisquert J. Urinary tract infection due to non-typhoidal Salmonella: report of 19 cases. J Infet, 2007; 54 (3): 245-9.
  • Bull AT, Ward AC, Goodfellow M. Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev, 2000; 64(3): 606.
  • Pilotto L, Hobson P, Burch MD, Ranmuthugala G, Attewell R, Weightman W. Acute skin irritant effects of cyanobacteria (blue-green algae) in healthy volunteers. Aust N Z J Public Health, 2004; (3): 220-4.
  • Botes D, Wessels P, Kruger H, Runnegar M, Santikarn S, Smith R, Barna J, Williams D. Structural studies on cyanoginosins-LR, -YR, -YA, and -YM, peptide toxins from Microcystis aeruginosa. J Chem Soc, ; 1: 2747–2748.
  • Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs, 2010; (5):1650-80.
  • Moore RE, Chen JL, Moore BS, Patterson GML, Carmichael WW. Biosynthesis of microcystin-LR. Origin of carbons in the Adda and Masp units. J Am Chem Soc, 1991; 113: 5083–4.
  • Welker M, Von Dohren H. Cyanobacterial peptides nature's own combinatorial biosynthesis. FEMS Microbiol Rev, 2006; 30: 530–63.
  • Ziegler K, Diener A, Herpin C, Richter R, Deutzmann R, Lockau W. Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate (cyanophycin). Eur J Biochem, 1998; 254: 154–9.
  • Jochimsen EM, Carmichael WW, An JS, Cardo DM, Cookson ST, Holmes CE, Antunes MB, de Melo Filho DA, Lyra TM, Barreto VS, Azevedo SM, Jarvis WR. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med, 1998; 338: 873–8.
  • Grosse Y, Baan R, Straif K, Secretan B, El Ghissassi F, Cogliano V. Carcinogenicity of nitrate, nitrite, and cyanobacterial peptide toxins. Lancet Oncol, ; 7(8): 628-9.
  • Azevedo SM, Carmichael WW, Jochimsen EM, Rinehart KL, Lau S, Shaw GR, EagleshamGK.Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil, Toxicol, 2002; 27:181- : 441-6.
  • Gürbüz F, Metcalf JS, Karahan AG, Codd GA. Analysis of dissolved microcystins in surface water samples from Kovada Lake, Turkey. Sci Total Environ, 2009; : 407(13): 4038-46.
  • DeVries SE, Galey FD, Namikoshi M, Woo JC. Clinical and pathologic findings of blue-green algae (Microcystis aeruginosa) intoxication in a dog. J Vet Diagn Invest, 1993; 5(3): 403-8.
  • Puschner B, Galey FD, Johnson B, Dickie CW, Vondy M, Francis T, Holstege DM. Blue-green algae toxicosis in cattle. J Am Vet Med Assoc, 1998; ;213(11): 1605-7. 14. Frazier K, Colvin B, Styer E, Hullinger G, Garcia
  • R. Microcystin toxicosis in cattle due to overgrowth of blue-green algae. Vet Hum Toxicol, 1998; 40(1): 4.
  • Fitzgerald SD, Poppenga RH. Toxicosis dueto microcystin hepatotoxins in three Holstein heifers. J Vet Diagn Invest, 1993; 5(4): 651-3.
  • Kerr LA, McCoy CP, Eaves D. Blue-green algae toxicosis in five dairy cows. J Am Vet Med Assoc, ; 1:191(7): 829-30. Short SB, Edwards WC. Blue-green algae toxicoses in Oklahoma. Vet Hum Toxicol, 1990; 32(6): 60.
  • Galey FD, Beasley VR, Carmichael WW, Kleppe G, Hooser SB, Haschek WM. Blue-green algae (Microcystis aeruginosa) hepatotoxicosis in dairy cows. Am J Vet Res, 1987; 48(9): 1415-20.
  • Dillenberg HO, Dehnel MK. Toxic waterbloom in Saskatchewan, 1959. Can Med Assoc J, 1960; (22): 1151-4.
  • Senior VE. Algal poisoning in Saskatchewan. Can J Comp Med Vet Sci, 1960; 24(1): 26-31.
  • Carbis CR, Mitchell GF, Anderson JW, McCauley I. The effects of microcystins on the serum biochemistry of carp, Cyprinus carpio L., when the toxins are administered by gavage, immersion and intraperitoneal routes. J Fish Diseas, 1996; 19(2): 9.
  • Li XY, Chung IK, Kim JI, Lee JA. Subchronic oral toxicity of microcystin in common carp (Cyprinus carpio L.) exposed to Microcystis under laboratory conditions. Toxicon, 2004; 15: 44(8): 821-7.
  • Fischer WJ, Dietrich DR. Pathological and biochemical characterization of microcystin- induced hepatopancreas and kidney damage in carp (Cyprinus carpio). Toxicol Appl Pharmacol, ; 164(1): 73-81.
  • Tencalla FG, Dietrich DR, Schlatter C, Toxicity of Microcystis aeruginosa peptide toxin to yearling rainbow trout (Oncorhynchus mykiss). Aquat Toxicol, 1994; 30(3): 215-24.
  • Ibelings BW, Bruning K, de Jonge J, Wolfstein K, Pires LM, Postma J, Burger T. Distribution of microcystins in a lake foodweb: No evidence for biomagnification. Microb Ecol, 2005; 49(4): 487-500.
  • Runnegar MT, Gerdes RG, Falconer IR. The uptake of the cyanobacterial hepatotoxin microcystin by isolated rat hepatocytes. Toxicon, 1991; 29: 43–51.
  • Runnegar M, Berndt N, Kaplowitz N. Microcystin uptake and inhibition of protein phosphatases: effects of chemoprotectants and self-inhibition in relation to known hepatic transporters. Toxicol Appl Pharmacol, 1995; 134: 264–72.
  • Dawson RM. The toxicology of microcystins. Toxicon, 1998; 36: 953–62.
  • Eriksson JE, Toivola D, Meriluoto JA, Karaki H, Han YG, Hartshorne D. Hepatocyte deformation induced by cyanobacterial toxins reflects inhibition of protein phosphatases. Biochem Biophys Res Commun, 1990; 173: 1347–53.
  • Sahin A, Tencalla FG, Dietrich DR, Mez K, Naegeli H. Enzymatic analysis of liver samples from rainbow trout for diagnosis of blue-green algae-induced toxicosis. Am J Vet Res, 1995; 56: 1110–5.
  • Krishnamurthy T, Carmichael WW, Sarver EW. Toxic peptides from freshwater cyanobacteria (blue-green algae). I. Isolation, purification and characterization of peptides from Microcystis aeruginosa and Anabaena flos-aquae. Toxicon, ; 24: 865–73.
  • Dittmann E, Börner T.Genetic contributions to the risk assessment of microcystin in the environment. Toxicol Appl Pharmacol, 2005; 203(3):192-200.
  • Yoshizawa S, Matsushima R, Watanabe MF, Harada K, Ichihara A, Carmichael WW, Fujiki H. Inhibition of protein phosphatases by microcystins and nodularin associated with hepatotoxicity. J Cancer Res Clin Oncol, 1990; 116: 609–14.
  • Nishiwaki S, Fujiki H, Suganuma M, Nishiwaki- Matsushima R, Sugimura T. Rapid purification of protein phosphatase 2A from mouse brain by microcystin-affinity chromatography. FEBS Lett, ; 279: 115–8.
  • Falconer IR. Tumor promotion and liver injury caused by oral consumption of cyanobacteria. Environ Toxicol Water Qual, 1991; 6: 177–84.
  • Nishiwaki-Matsushima R, Ohta T, Nishiwaki S, Suganuma M, Kohyama K, Ishikawa T, Carmichael WW, Fujiki H. Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin- LR. J Cancer Res Clin Oncol, 1992; 118: 420–4.
  • Yu S. Primary prevention of hepatocellular carcinoma. J Gastroenterol Hepatol, 1995; 10: –82.
  • Tanabe Y, Sano T, Kasai F, Watanabe MM. Recombination, cryptic clades and neutral molecular divergence of the microcystin synthetase (mcy) genes of toxic cyanobacterium Microcystis aeruginosa. BMC Evol Biol, 2009; 9:115.
  • Tillett D, Dittmann E, Erhard M, von Dohren H, Borner T, Neilan BA. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol, 2000; 7: 753–64.
  • Christiansen G, Fastner J, Erhard M, Borner T, Dittmann E. Microcystin biosynthesis in planktothrix: genes, evolution, and manipulation. J Bacteriol, 2003; 185: 564–72.
  • Rouhiainen L, Vakkilainen T, Siemer BL, Buikema W, Haselkorn R, Sivonen K. Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl Environ Microbiol, 2004; 70: 686–92.
  • Hicks LM, Moffitt MC, Beer LL, Moore B, Kelleher NL. Structural characterisation of in vitro and in vivo intermediates on the loading module of microcystin synthetase. ACS Chem Biol, 2006; 1: –102.
  • Nishizawa T, Asayama M, Shirai M. Cyclic heptapeptide microcystin biosynthesis requires the glutamate racemase gene. Microbiology, 2001; : 1235–41.
  • Sielaff H, Dittmann E, Tandeau De Marsac N, Bouchier C, Von Dohren H, Borner T, Schwecke T. The mcyF gene of the microcystin biosynthetic gene cluster from Microcystis aeruginosa encodes an aspartate racemase. Biochem J, 2003; 373: –16.
  • Pearson LA. Barrow KD, Neilan BA. Characterization of the 2-hydroxy-acid dehydrogenase McyI, encoded within the microcystin biosynthesis gene cluster of Microcystis aeruginosa PCC7806. J Biol Chem, 2007; 282: 4681–92.
  • Pearson LA, Hisbergues M, Borner T, Dittmann E, Neilan BA. Inactivation of an ABC transporter gene, mcyH, results in loss of microcystin production in the cyanobacterium Microcystis aeruginosa PCC Appl Environ Microbiol, 2004; 70: 6370–8.
  • Shi L, Carmichael WW, Miller I. Immuno-gold localization of hepatotoxins in cyanobacterial cells. Arch Microbiol, 1995; 16: 7–15.
  • Young FM, Thomson C, Metcalf JS, Lucocq JM, Codd GA. Immunogold localisation of microcystins in cryosectioned cells of Microcystis. J Struct Biol, ; 151: 208–14.
  • Kaebernick M, Neilan BA, Borner T, Dittmann E. Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl Environ Microbiol, 2000; 66: 3387–92.
  • Mikalsen B, Boison G, Skulberg OM, Fastner J, Davies W, Gabrielsen TM, Rudi K, Jakobsen KS. Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. J Bacteriol, ; 185: 2774–85.
  • Tooming-Klunderud A, Mikalsen B, Kristensen T, Jakobsen KS. The mosaic structure of the mcyABC operon in Microcystis. Microbiology, 2008; 154: –99.
  • Sivonen K. Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl Environ Microbiol, 1990; 56: 2658–66.
  • Lukac M, Aegerter R. Influence of trace metals on growth and toxin production of Microcystis aeruginosa. Toxicon, 1993; 31: 293–305.
  • Van der Westhuizen AJ, Eloff JN. Effect of temperature and light on the toxicity and growth of the blue-green alga Microcystis aeruginosa (UV- ). Planta, 1985; 163: 55–9.
  • Song L, Sano T, Li R, Watanabe M, Liu Y, Kaya K. Microcystin production of Microcystis viridis (cyanobacteria) under different culture conditions. Phycol Res, 1998; 42: 19.
  • Davis TW, Berry DL, Boyer GL, Gobler CJ. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae, 2009; 8 : 715–25.
  • Tonk L, Visser PM, Christiansen G, Dittmann E, Snelder EO, Wiedner C, Mur LR, Huisman J. The microcystin composition of the cyanobacterium Planktothrix agardhii changes toward a more toxic variant with increasing light intensity. Appl Environ Microbiol, 2005; 71: 5177–81.
  • Sevilla E, Martin-Luna B, Vela L, Bes MT, Fillat MF, Peleato ML. Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806. Environ Microbiol, ; 10: 2476–83.
  • Kaebernick M, Dittmann E, Borner T, Neilan BA. Multiple alternate transcripts direct the biosynthesis of microcystin, a cyanobacterial nonribosomal peptide. Appl Environ Microbiol, ; 68: 449–55.
  • Meissner K, Dittmann E, Borner T. Toxic and non- toxic strains of the cyanobacterium Microcystis aeruginosa contain sequences homologous to peptide synthetase genes. FEMS Microbiol Lett, ;135: 295–303.
  • Dittmann E, Meissner K, Borner T. Conserved sequences of peptide synthetase genes in the cyanobacterium Microcystis aeruginosa. Phycologia, 1996; 35: 62–7.
  • Neilan BA, Dittmann E, Rouhiainen L, Bass RA, Schaub V, Sivonen K, Borner T. Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. J Bacteriol, 1999; 181: 4089–97.
  • Kurmayer R, Kutzenberger T. Application of real- time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Appl Environ Microbiol, 2003; 69: –30.
  • Zhao S, Xie P, Li G, Jun C, Cai Y, Xiong Q, Zhao Y.The proteomic study on cellular responses of the testes of zebrafish (Danio rerio) exposed to microcystin-RR. Proteomics, 2012; 12(2): 300-12.
  • Srivastava A, Choi GG, Ahn CY, Oh HM, Ravi AK, Asthana RK. Dynamics of microcystin production and quantification of potentially toxigenic Microcystis sp. using real-time PCR. Water Res, ; 1: 46(3): 817-27.
  • Cantor GH, Beckonert O, Bollard ME, Keun HC, Ebbels TM, Antti H, Wijsman JA, Bible RH, Breau AP, Cockerell GL, Holmes E, Lindon JC, Nicholson JK. Integrated histopathological and urinary metabonomic investigation of the pathogenesis of Microcystin-LR toxicosis. Vet Pathol, 2012; in press.