Geniş spektrumlu β-laktamaz üreten Escherichia coli’ ye karşı dört farklı antibiyotiğin in vitro etkinliği

Amaç: Özellikle, geniş spektrum ß-laktamaz GSBL üreten Escherichia coli suşlarının sebep olduğu idrar yolları enfeksiyonları giderek artan bir sıklıkta görülmekte ve tedavi yetersizlikleriyle birlikte komplikasyonlara yol açabilmektedir. GSBL üreten mikroorganizma hastalarda, uygun ampirik tedavi seçimi oluşabilecek komplikasyonların çalışmada; idrar kültürlerinden izole edilen GSBL üreten E. coli suşlarının tigesiklin, ertapenem, cefoperazone + sulbactam sulperazon ve levofloksasin antibiyotiklerine karşı MİK minimum inhibisyon konsantrasyonu düzeylerinin araştırılması amaçlanmıştır.MİK aralığı 0,190-128 µg/ml olarak belirlenmiştir. Her iki antibiyotiğin MİK50 ve MİK90 değerleri sırası ile GSBL üreten E. coli suşlarında levofloksasinin MİK aralığı 0,01>32 µg/ml ve sulperazon MİK aralığı 0,190-128µg/ml olarak belirlenmiştir. Her iki antibiyotiğin MİK50 ve MİK90 değerleri sırası ile 12, ≥32, 12, 32 µg/ml bulunmuştur. Tigesiklin için MİK aralığının 0,190-25 µg/ml ve MİK50 ve MİK90 değerlerinin sırası ile 0,50 ve 1 μg/ml; ertapenem için MİK aralığının 0,004-0,75 µg/ml ve MİK50 ve MİK90 değerlerinin sırası ile 0,047 ve 0,250 μg/ml olduğu saptanmıştır. Çalışmamızda; ertapeneme karşı direnç saptamazken tigesiklinde %1,15, sulperazonda %10,3 direnç ve %18,4 intermediate MİK düzeyi saptarken, levofloksasinde %24 duyarlı ve %76 dirençli belirlenmiştir.Sonuç: Levofloksasinde saptanan %75,9’luk direnç oranı nedeniyle özellikle GSBL üreten suşlarla enfeksiyon gelişme riski yüksek hastalarda amprik tedavi seçiminde kinolonların tercih edilmemesi uygun olacaktır. Bu suşların tedavisinde ertapenem ve tigesiklin etkin seçenekler olarak görülmüştür. Sulperazon da saptanan %10,3 direnç ve %18,4 intermediate MİK değerleri nedeniyle uygun hastalarda duyarlılık sonuçlarına göre tercih edilebilir. GSBL üreten E. coli suşlarla oluşan enfeksiyonlarda bu enfeksiyonlara ait risk faktörleri taşıyan hastalara uygun ve etkili amprik tedavi başlanması oluşabilecek komplikasyonların önlenmesi açısından önem taşımaktadır

In vitro activity of four different antibiotics against extended-spectrum β-lactamase producing Escherichia coli

Objective: Urinary tract infections due to wide spectrum ß-lactamase GSBL producing Escherichia coli strains are especially seen with increasing prevalence and may lead to complications with treatment insufficiencies. In patients having risk factors for GSBL producing microorganism, the selection of an appropriate ampirical treatment is important in preventing the complications that may be seen. In this study, MIC minimum inhibition concentration values of GSBL producing E. coli strains’ obtained from urine cultures, against tigecyclin, ertapenem, cefoperazone+ sulbactam sulperazon and levofloxacin antibiotics were aimed to be investigated.Method: In 2010, 87 GSBL producing E. coli strains isolated from urine cultures in TOBB ETÜ Hospital Clinical Microbiology Laboratory were identified with conventional methods. Antibiotic sensitivity tests were investigated by using Vitek-32 BioMerieux, France . GBSL production of these strains was confirmed by double disc synergy test. Identified GSBL producing E.coli strains’ MIC levels and sensitivities against antibiotics were investigated by using E- Test.Results: In GSBL producing E.coli strains, MIC of levofloxacin range of 0,01- >32 µg/ml and MIC range MİK aralığı 0,190-128 µg/ml olarak belirlenmiştir. Her iki antibiyotiğin MİK50 ve MİK90 değerleri sırası ile GSBL üreten E. coli suşlarında levofloksasinin MİK aralığı 0,01>32 µg/ml ve sulperazon MİK aralığı 0,190-128µg/ml olarak belirlenmiştir. Her iki antibiyotiğin MİK50 ve MİK90 değerleri sırası ile 12, ≥32, 12, 32 µg/ml bulunmuştur. Tigesiklin için MİK aralığının 0,190-25 µg/ml ve MİK50 ve MİK90 değerlerinin sırası ile 0,50 ve 1 μg/ml; ertapenem için MİK aralığının 0,004-0,75 µg/ml ve MİK50 ve MİK90 değerlerinin sırası ile 0,047 ve 0,250 μg/ml olduğu saptanmıştır. Çalışmamızda; ertapeneme karşı direnç saptamazken tigesiklinde %1,15, sulperazonda %10,3 direnç ve %18,4 intermediate MİK düzeyi saptarken, levofloksasinde %24 duyarlı ve %76 dirençli belirlenmiştir.Sonuç: Levofloksasinde saptanan %75,9’luk direnç oranı nedeniyle özellikle GSBL üreten suşlarla enfeksiyon gelişme riski yüksek hastalarda amprik tedavi seçiminde kinolonların tercih edilmemesi uygun olacaktır. Bu suşların tedavisinde ertapenem ve tigesiklin etkin seçenekler olarak görülmüştür. Sulperazon da saptanan %10,3 direnç ve %18,4 intermediate MİK değerleri nedeniyle uygun hastalarda duyarlılık sonuçlarına göre tercih edilebilir. GSBL üreten E. coli suşlarla oluşan enfeksiyonlarda bu enfeksiyonlara ait risk faktörleri taşıyan hastalara uygun ve etkili amprik tedavi başlanması oluşabilecek komplikasyonların önlenmesi açısından önem taşımaktadır

___

  • 1. Blázquez R, Menasalvas A, Carpena I, Ramírez C, Guerrero C, Moreno S. Invasive disease caused by ciprofloxacin-resistant uropathogenic Escherichia coli. Eur J Clin Microbiol Infect Dis, 1999; 18: 503-5.
  • 2. Kaya D, Öksüz Ş, Kaya E. Üriner sistem enfeksiyonu etkeni olan Escherichia coli suşlarının bazı antibiyotiklere duyarlılıklarının araştırılması. A İ B Ü. Düzce Tıp Fak Derg, 2001; 1: 43-6.
  • 3. Aydos SE, Yavuzdemir Ş, Nohutçu Y, Çavuş İ. Sistit şikayeti ile başvuran hastalardan elde edilen bakterilerin çeşitli antibiyotiklere in vitro duyarlılıkları. J Turk Soc Obstet Gynecol, 2006; 3(2): 118-21.
  • 4. Najar MS, Saldanha CL, Banday KA. Approach to urinary tract infections. Indian J Nephrol, 2009;19(4): 129-39.
  • 5. Yousefi Rad A, Bilge S, Fidan A. Comparison of susceptibility of Escherichia coli strains isolated from urinary system infections to ciprofloxacin and other antibiotics. Türk Hij Den Biyol Derg, 2008; 65(3): 115-9.
  • 6. Laksai Y, Severino M, Perili M, Amicosante G, Bonfiglio G, Stefani S. First identification of an SHV12 extended-spectrum ß-lactamase in Klebsiella pneumoniae isolated in Italy. J Antimicrob Chemoth, 2000; 45: 349-51.
  • 7. Mark Melzer M, Petersen I. Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. Coli. J Infection, 2007; 55(3): 254-9.
  • 8. Kasap M, Fashae K, Torol S, Kolayli F, Budak F, Vahaboglu H. Characterization of ESBL (SHV12) producing clinical isolate of Enterobacter aerogenes from a tertiary care hospital in Nigeria. Ann Clin Microbiol Antimicrob, 2010; 9:1.
  • 9. Raveh D, Yinnon AM, Broide E, Rudensky B. Susceptibilities of ESBL-producing Enterobactericeae to ertapenem, meropenem and piperacillin tazobactam with and without clavulanic acid. Chemotherapy, 2007; 53(3): 185-9.
  • 10. Chen LR, Zhou HW, Cai JC, Zhang R, Chen GX. Detection of plasmid-mediated IMP-1 metallo-βlactamase and quinolone resistance determinants in an ertapenem-resistant Enterobacter cloacae isolate. J Zhejiang Univ Sci B, 2009;10(5): 348-54.
  • 11. Taneja N, Mohan B, Khurana S, Sharma M. Antimicrobial resistance in selected bacterial enteropathogens in north India. Indian J Med Res. 2004;120(1):39-43.
  • 12. Clinical and Laboratory Standards Institue. Performance Standards for Antimicrobial Susceptibility Testing; Sixteenth Informational Supplement. CLSI document M100-S16, Pennsylvania, 2006.
  • 13. Wyeth Pharmaceutics. Tygacil (tigecycline) for injection [package insert]. Wyeth Phamaceuticals Inc., Philadelphia, Pa. 2005.
  • 14. Clinical and Laboratory Standards Institute (CLSI). Performance Standard for Antimicrobial Susceptibility Testing. Twentieth Informational supplement. CLSI document M100-S20. Wayne, PA. 2010.
  • 15. Akova M. Sulbactam-containing beta-lactamase inhibitor combinations. Clin Microbiol Infect. 2008;14 (Suppl 1):185-8.
  • 16. Baquero F, Hsueh PR, Paterson DL, Rossi F, Bochicchio GV, Gallagher G, et al. In vitro susceptibilities of aerobic and facultatively anaerobic gram-negative bacilli isolated from patients with intra-abdominal infections worldwide: 2005 results from Study for Monitoring Antimicrobial Resistance Trends (SMART). Surg Infect (Larchmt), 2009; 10(2): 99-104.
  • 17. Mody RM, Erwin DP, Summers AM, Carrero HA, Selby EB, Ewell AJ, et al. Ertapenem susceptibility of extended spectrum beta-lactamase-producing organisms. Ann Clin Microbiol Antimicrob, 2007; 6:1-6.
  • 18. Karaoğlan İ, Zer Y, Süner A, Namıduru M. Bazı Enterobacteriaceae türlerine ertapenemin in-vitro etkinliği. ANKEM Derg, 2008; 22(4): 183-7.
  • 19. Betriu C, Salso S, Sánchez A, Culebras E, Gómez M, Rodríguez-AvialI, et al. Comparative in vitro activity and the inoculum effect of ertapenem against Enterobactericeae resistant to extendedspectrum cephalosporins. Int J Antimicrob Agent, 2006; 28(1): 1-5.
  • 20. David L, Paterson DL, Rossi F, Baquero F, Hsueh PR, Gail L, et al. In vitro susceptibilities of aerobic and facultative gram negative bacilli isolated from patients with intra-abdominal infections worldwide: the 2003 Study for Monitoring Antimicrob Resistance Trends (SMART). J Antimicrob Chemother, 2005; 55(6): 965-73.
  • 21. Alhambra A, Cuadros JA, Cacho J, Gomez-Garces JL, Alos JI. In vitro susceptibility of recent antibiotic resistant urinary pathogens to ertapenem and 12 other antibiotics. J Antimicrob Chemot, 2004; 53, 1090-4.
  • 22. Livermore DM, Carter MW, Bagel S, Wiedemann B, Baquero F, Loza E, et al. In vitro activities of ertapenem (MK-0826) against recent clinical bacteria collected in Europe and Australia. Antimicrob Agents Ch, 2001; 45, 1860-7.
  • 23. Sorlózano A, Gutiérrez J, Romero JM, Luna JD, Damas M, Piédrola G. Activity in vitro of twelve antibiotics against clinical isolates of extendedspectrum beta-lactamase producing Escherichia coli. J Basic Microbiol, 2007; 47, 413–6.
  • 24. Kohler J, Dorso KL, Young K, Hammond GG, Rosen H, Kropp H, et al. In vitro activities of the potent, broad-spectrum carbapenem MK-0826 (L-749,345) against broad-spectrum β-lactamase-producing Klebsiella pneumoniae and Escherichia coli clinical isolates. Antimicrob Agents Ch, 1999; 43, 1170–6.
  • 25. Stein GE, Craig WA. Tigecycline: a critical analysis. Clin Infect Dis, 2006; 43(4): 518.
  • 26. Livermore DM. Tigecycline: what is it, and where should it be used? J Antimicrob Chemoth, 2005; 56(4): 611-4.
  • 27. Fritsche TR, Strabala PA, Sader HS, Dowzicky MJ,Jones RN. Activity of tigecyline tested against a global collection of Enterobacteriaceae, including tetracycline resistant isolates. Diagn Microbiol Infect Dis, 2005; 52(3): 209-13.
  • 28. Kaya I, Göker G, Bal Kayacan Ç, Gürler N. Yoğun bakım izolatı Gram negatif bakterilerde tigesiklin duyarlılığı. ANKEM Derg, 2007;21(3):142-5.
  • 29. Baykan M, Kaya M, Arslan U, Baysal B. İdrar örneklerinden izole edilen E.coli suşlarının antimikrobiyallere duyarlılıklarının değerlendirilmesi. İnönü Üniv Tıp Fak Derg, 2001; 8:15-7.
  • 30. Güdücüoğlu H, Baykal S, İzci H, Berktaş M. Antimicrobial resistance of Escherichia coli and Klebsiella pneumoniae strains that produce extended, spectrum Beta-lactamase. ANKEM Derg, 2007; 21(3): 155-60.
  • 31. Bouchillon SK, Hoban DJ, Johnson BM, Stevens TM, Dowzicky MJ, Wu DH, et al. In vitro evaluation of tigecycline and comparative agents in 3049 clinical isolates: 2001 to 2002, Diagn Microbiol Infect Dis, 2005; 51(4): 291-5.
  • 32. Karaoğlan İ, Zer Y, Namıduru M. GSBL pozitif Escherichia coli ve Klebsiella pneumoniae suşlarında tigesiklinin in-vitro etkinliği. ANKEM Derg, 2008; 22(2): 69-71.
  • 33. Vardar-Ünlü G, Ünlü M, Yağmuroğlu A, Yıldırım D. Klinik örneklerden soyutlanan Escherichia coli ve Klebsiella pneumoniae suşlarına tigesiklin etkinliği. ANKEM Derg, 2009; 23(1): 22-5.
  • 34. Sader HS, Jones RN, Dowzicky MJ, Fritsche TR. Antimicrobial activity of tigecycline tested against nosocomial bacterial pathogens from patients hospitalized in the intensive care unit, Diagn Microbiol Infect Dis, 2005; 52(3): 203-8.
  • 35. Yunsong Y, Wwilin Z, Agang C, Yongxiang D, Yilin M. Epidemiological and antibiotic resistant study on extended-spectrum β-lactamase-produsing Escherichia coli and Klebsiella pneumoniae in Zhejiang Province. Chinese Medical Journal, 2002; 115(10): 1479-82.
  • 36. Akova M. Sulbactam-containing beta-lactamase inhibitor combinations. Clin Microbiol Infect, 2008; 14 (Suppl 1):185-8.
  • 37. Chanawong A, Lulitanond A, Kaewkes W, Lulitanond V, Sukanya S, Preecha H. Ctx-M extendedspectrum Β-lactamases among clinical isolates of Enterobacteriaceae in a Thai University Hospital. Southeast Asian J Trop Med Public Health, 2007; 38(3): 493-500.
  • 38. Bhattacharjee A, Sen MR, Prakash P, Gaur A, Anupurba S. Increased prevalence of extended spectrum β-lactamase producers in neonatal septicaemic cases at a tertiary referral hospital. Indian J Med Microbiol, 2008; 26(4): 356-60.
  • 39. Hortiwakul R, Chayakul P, Ingviya N. In vitro activity of cefminox and other β-lactam antibiotics against clinical isolates of extended-spectrum-βlactamase-producing Klebsiella pneumoniae and Escherichia coli. J Infect Dis Antimicrob Agents, 2006; 23, 9-14.
  • 40. Yu Y, Zhou W, Chen Y, Ding Y, Ma Y. Epidemiological and antibiotic resistant study on extendedspectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Zhejiang Province. Chinese Med J, 2002; 115(10): 1479-82.
  • 41. Ingviya N, Hortiwakul R, Chayakul P, Thamjarungwong B. Prevalence and susceptibility patterns of Klebsiella pneumoniae and Escherichia coli producing extended-spectrum beta lactamases in Songklanagarind Hospital, Thailand. J Infect Dis Antimicrob Agents, 2003; 20(3): 127-34.
  • 42. Warren JW, Abrutyn E, Hebel JR, Johnson JR, Schaeffer AJ, Stamm WE. Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Clin Infect Dis, 1999; 29(4): 745-58.
  • 43. Gupta K, Hooton TM, Stamm WE. Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections. Ann Intern Med, 2001; 135(1): 41-50.
  • 44. Colodner R, Samra Z, Keller N, Sprecher H, Block C, Peled N, et al. First national surveillance of susceptibility of extended-spectrum betalactamase-producing Escherichia coli and Klebsiella spp. to antimicrobials in Israel. Diagn Microbiol Infect Dis, 2007; 57(2): 201-5.
  • 45. Scholar EM, Pratt WB. The fluoroquinolones, In: The Antimicrobial Drugs. Oxford University Pres., 2 th Edition, 2000; 257-79.
  • 46. Corkill JE, Anson JJ, Hart CA. High prevalence of the plasmid-mediated quinolone resistance determinant qnrA in multidrug-resistant Enterobacteriaceae from blood cultures in Liverpool, UK. J Antimicrob Chemoth, 2005; 56(6): 1115-7.
  • 47. Jacoby GA, Walsh KE, Mills DM, Walker VJ, Oh H, Robicsek A, et al. qnrB, another plasmid mediated gene for quinolone resistance. Antimicrob Agents Ch, 2006; 50(4): 1178-82.
  • 48. Burgess DS, Michael F, Carden MF, Zinsmeyer JC. Levofloxacin (LEV) and cefepime (CFP) alone and in combination against multi-drug resistant ESBL E. coli and Klebsiella sp. ICAAC, Chicago, IL, 2007.
  • 49. Becnel Boyd L, Maynard MJ, Morgan-Linnell SK, Horton LB, Sucgang R, Hamill RJ, et al. Relationships among ciprofloxacin, gatifloxacin, levofloxacin, and norfloxacin MICs for fluoroquinolone-resistant Escherichia coli clinical isolates. Antimicrob Agents Ch, 2009; 53(1): 229-34.
  • 50. Kariuki S, Revathi G, JCorkill J, Kiiru J, Mwituria J, Mirza N, et al. Escherichia coli from communityacquired urinary tract infections resistant to fluoroquinolones and extended-spectrum Betalactams, J Infect Dev Countries, 2007; 1(3): 257- 62.
  • 51. Cambau E, Bordon F, Collatz E, Gutmann L. Novel gyrA point mutation in a strain of Escherichia coli resistant to fluoroquinolones but not to nalidixic acid. Antimicrob Agents Chemot, 1993; 37(6): 1247-52.
Türk Hijyen ve Deneysel Biyoloji Dergisi-Cover
  • ISSN: 0377-9777
  • Başlangıç: 1938
  • Yayıncı: Türkiye Halk Sağlığı Kurumu