Gateway klonlama teknolojisine genel bakış daha hızlı, daha kolay, daha etkin bir klonlama yöntemi

Gateway Klonlama Teknolojisi, James Hartley, Dominic Esposito ve Mike Brasch adlı araştırmacılar tarafından geliştirilmiştir. Bu teknoloji temel olarak, bakteriyofaj lambdanın spesifik rekombinasyon özelliklerine göre ayarlanabilen, evrensel bir klonlama yöntemidir. Gateway Klonlama iki aşamada gerçekleştirilmektedir. Amplifiye edilen ve attB içeren PCR ürününün, attP içeren uygun bir donör vektörle BP klonaz enzimi yardımıyla birleşerek attL içeren bir giriş klonu meydana getirdikleri aşama BP olarak adlandırılan birinci aşamadır. İkinci aşama ise LR aşaması olarak adlandırılmaktadır. Bu aşamada, BP aşaması ile elde edilen giriş klonu, attR içeren hedef vektöre LR klonaz enzimi yardımıyla transfer edilerek, attB içeren hedeflenen klon elde edilmektedir. Gateway Klonlama Teknolojisinin birçok avantajı bulunmaktadır. Bu ileri klonlama teknolojisi, hızlı ve etkili bir şekilde DNA zincirinin çoklu vektör sistemine uygulanarak istenen proteinin elde edilmesini ve fonksiyonel analizinin yapılmasını olanaklı kılmaktadır. Ayrıca çok sayıda genetik DNA zincirinin çoklu sayıda hedeflenen vektörlere transferini sağlamaktadır. Çok sayıda örneklerin uygulanmasına uygun formatta adapte edilebilmektedir. İstenen vektör, hedeflenen gateway vektörüne kolaylıkla transfer edilebilmektedir. Sonuç olarak Gateway Klonlama Teknolojisinin başarılı sonuçları ve avantajları nedeniyle; özellikle aşı ve ilaç geliştirme çalışmalarında ülkemiz bilim insanlarınca da tercih edilmesi önerilir.

General View on gateway cloning technology faster, easier, more accurate cloning method

Gateway technology is developed by scientists who are James Hartley, Dominic Esposito and Mike Brasch. The Gateway Cloning Technology is a universal cloning method based on the site-specific recombination properties of bacteriophage lambda. The Gateway Cloning is performed in two steps. The first step, called BP recombination, the reaction between an attB-flanked DNA fragment and an attP-containing donor vector to generate an entry clone. The second step is called as LR Reaction. In this stage, LR recombination reaction between an attL-containing entry clone and an attR-containing destination vector to generate an expression clone. Gateway Technology have lots of advantages. Advanced cloning technology, provides a rapid and highly efficient way to move DNA sequences into multiple vector systems for functional analysis and protein expression. Easily accommodates the transfer of a large number of DNA sequences into multiple destination vectors. Suitable for adaptation to high-throughput formats. Allows easy conversion of your favorite vector into a Gateway destination vector. It is the system that will be succesfully used on vaccine and drug development researches. As result, due to the Gateway Technology’s succesful results and advantages, it is reccommended that this technic should be preferred by our scientists particulary on drug and vaccine development.

___

  • Watt P. Screening for peptide drugs from the natural repertoire of biodiverse protein folds. Nat Biotechnol, 2006; 24 (2): 177-83.
  • Hartley JL, Temple GF, Brasch MA. DNA Cloning Using in vitro site-specifc recombination. Genome Research, 2000; 10: 1788-95.
  • Landy A. Dynamic, Structural, and regulatory aspects of lambda site-specifc recombination. Ann Rev Biochem, 1989; 89: 913-49.
  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. Current Protocols in Molecular Biology. New York: Greene Publishing Associates and Wiley-Interscience 1994.
  • Bernard P, Couturier M. Cell Killing by the F Plasmid CcdB Protein involves poisoning of DNA-topoisomerase II complexes. J Mol Biol, 1992: 226; 735-45.
  • Bernard P, Kezdy KE, Melderen LV, Steyaert J, Wyns L, Pato ML, Higgins PN, Couturier M. The F plasmid CcdB protein induces effcient ATP-dependent DNA cleavage by gyrase. J Mol Biol, 1993; 234: 534-41.
  • Kozak M, Landy A Gateway Technology A universal technology to clone DNA sequences for functional analysis and expression in multiple systems. Catalog nos. 12535-019. Version E. 22. 2003.
  • Calmels T, Parriche M, Burand H, Tiraby G. High effciency transformation of Tolypocladium geodes conidiospores to phleomycin resistance. Curr Genet, 1991; 20: 309-14.
  • Drocourt D, Calmels TPG, Reynes JP, Baron M, Tiraby G. Cassettes of the Streptoalloteichus hindustanus ble Gene for transformation of lower and higher eukaryotes to phleomycin resistance. Nucleic Acids Res,1990; 20: 40-49.
  • Aaron J, Patton Gateway Cloning Technology Overview. http://www.lifetech.com/gateway Interview. Life Technologies 2009.
  • Gatignol A, Baron M, Tiraby G. Phleomycin Resistance Encoded by the ble Gene from Transposon Tn5 as a Dominant Selectable Marker in Saccharomyces cerevisiae. Mol Gen Genet, 1987; 2007: 342-8.
  • Kertbundit S, Greve H, Deboeck F, Montagu MV, Hernalsteens JP. In vivo Randomb-glucuronidase Gene Fusions in Arabidopsis thaliana. Proc Natl Acad Sci USA, 1991; 88: 5212-6.
  • Kozak M. An analysis of 5´-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res,1987; 15: 8125-48.
  • Mulsant P, Tiraby G, Kallerhoff J, Perret J. Phleomycin resistance as a dominant selectable marker in CHO Cells. Somat Cell Mol Genet, 1988; 14: 243-52.
  • Bushman W, Thompson JF, Vargas L, Landy A. Control of directionality in lambda site specifc recombination. Science, 1985; 230: 906-11.
  • Hartley J, Esposito D. Gateway recombination cloning comes of age quest magazine presents. Davidson’s Molecular Biology Homepage 2009.
  • Bernard P, Bushman W, sasaki Y. Gateway Technology Manual, A Universal technology to Clone DNA sequences for Functional analysis and expression in multiple systems. Invitrogen 2007.