Aşkale-Erzurum Çimento fabrikası etrafında kirleticilere maruz kalmış dört farklı liken türü kullanılarak moleküler boyut da çevresel risk değerlendirilmesi

Amaç: Aşkale-Erzurum çimento fabrikasının etrafında çeşitli çevresel kirleticilerin genotoksik etkisinin belirlenmesi amacıyla Pseudevernia furfuracea, Lobaria pulmonaria, Cetralia islandica ve Usnea longissima isimli dört liken türü kullanılmıştır. Yöntemler: Çevresel kirleticilere maruz kalmış örnekler ile kontrol örneklerinin protein boyutunda ve moleküler boyutta da RAPD bantlarında yeni bant oluşumu ve/veya bant kaybolması olup olmadığı kontrol edilmiştir. Bulgular: Çimento fabrikasına 50 m uzaklıkta kirleticilere maruz kalan örneklerde protein içeriğinde belirgin bir düşüş gözlenmiş olmasına karşın çimento fabrikasına 100 m ve 200 m uzaklıktaki liken örneklerinde protein içeriğinde herhangi bir değişim gözlemlenmemiştir. Çalışılan dört tür arasında P. furfuracea bant görünümü ve bant kaybolma oranı en yüksek olan türdür. Çimento fabrikasına 50, 100 ve 200m. uzaklıkta bulunan 1., 2. ve 3. bölgeler kirleticilere maruz kaldıktan sonra P. furfuracea’da kontrol bant sayısı 83 sırasıyla 19, 45 ve 51 bant gözlenmiştir. Buna ek olarak yine 1., 2. ve 3. bölgelerdeki P. furfuracea örneklerinde sırasıyla 31, 13 ve 15 bant kaybolmuştur. Ayrıca, en yüksek polimorfizm değeri OPC04 primeri ile U. longissima ve L. pulmonaria P%= % 86.6 liken türlerinde ve en düşük polimorfizm oranı P%= 45.4% OPC01 primeri ile L. pulmonaria’da elde edilmiştir. Çalışma sonucunda elde edilen bulgulara göre; çimento fabrikasına en yakın 50 m yer olan bölge 1’de en yüksek bant artışı ve bant kaybolması tespit edilmiştir. Genetik Kalıp Stabilitesi GKS değerlerinin düşük seviyede ortaya çıktığı bölge 1’de dört liken türünde genotoksik etki yüksek düzeyde belirlenmiştir. Sonuç: Bu çalışma, çimento fabrikası etrafında toplanan dört farklı liken türünün kullanılması ile çeşitli çevresel kirleticilerin neden olduğu genotoksik ve biyolojik etkinin ön belirteci olarak bilgi vermektedir. Genotoksik ajanların erken uyarı durumunun belirlenmesinde biyomarkır olarak indikatör organizmalar ile birlikte kullanılmasının, hava kirliliğinin yol açtığı hasar düzeyinin yorumlanmasında güvenilir olduğu görülmüştür.

Environmental risk assessment under the pollutants exposure with using four lichen species and molecular assay in cement plant, Aşkale-Erzurum Turkey

Objective: The aim of the study is to determine the genotoxic effects of various environmental pollutants around cement factory in Aşkale-Erzurum. It was studied four lichen species which include Pseudevernia furfuracea, Lobaria pulmonaria, Cetralia islandica and Usnea longissima. Methods: The main observation or changes in the protein assay and RAPD patterns included appearance of new bands and/or disappearance of normal bands compared with the control samples. Results: Although significant amount of decrease in protein content of the samples exposed to pollutants has been observed 50 m away from cement factory, no changes was detected in the protein content of liken samples 100 m and 200 m away from cement factory. Among the four studied species, P. furfuracea revealed to have the highest level of band appearance and disappearance. Following the exposure to the pollutants of 1, 2 and 3 district situated at a distance of 50, 100, 200m to the cement factory, P. furfuracea with a control bands were observed respectively. Moreover 31, 13 and 15 bands from the control species disappeared in sites 1, 2 and 3 in P. furfuracea samples. Furthermore, the highest polymorphism value was obtained P% = 86,6% in U. longissima and L. pulmonaria by the OPC04 primer, and the lowest polymorphism was yielded P%= 45,4% in L. pulmonaria by the OPC01 primer. According to this study site 1, which is the nearest site to the cement factory 50m , has the highest appearance and disappearance band. As the samples from site 1 revealed the lowest level of GTS values might led to a high level of genotoxic effect in the four lichen species. Conclusion: This study provides preliminary evidence to the biological effects and genotoxicological consequences caused by various environmental contaminants with the use of four different lichen species collected from around cement factory. The use of indicator organisms as a biomarker in the early detection of genotoxic agents showed reliable sensitivity in terms of estimating the level of damage caused by air pollution.

___

  • 1. Viarengo A, Lowe D, Bolognesi C, Fabbri E, Koehler A. The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comp Biochem Physiol C Toxic Pharmacol, 2007; 146(3): 281–300.
  • 2. Grant WF. Higher plant assay for the detection of genotoxicity in air polluted environments. Ecosyst Health, 1998; 4(4): 210-29.
  • 3. Piraino F, Aina R, Palin L, Prato N, Sgorbati S, Santagostino A et al. Air quality biomonitoring: assessment of air pollution genotoxicity in the Province of Novara (North Italy) by using Trifolium repens L. and molecular markors. Sci Total Environ, 2006; 372(1): 350-9.
  • 4. Baird WM, Chemerys RA, Diamond L, Meedel TH, Whittaker JR. Symposium: carcinogenic polynuclear aromatic hydrocarbons in the marine environment. In: Richards NL, Jackson BL (eds). U.S. Environ. Protection Agency Rep, 1982; 191-200.
  • 5. Singer B. Grunberger D. Molecular Biology of Mutagens and Carcinogens. New York: Plenum Press, 1983.
  • 6. Dipple A. Polycyclic aromatic hydrocarbon carcinogensis: an introduction. ACS Symp. Amer. Chem. Soc. (Eds R.D. Harvey) Washington; 1985:283: 1-17.
  • 7. Sawıcki E. Air Pollution and Cancer in Man, International Agency for Research on Cancer (IARC), Lyon, France. 1977;16: 127-57.
  • 8. Cohen AJ, Pope CA. Lung cancer and air pollution. Environ Health Perspect, 1995; 103(8): 219–24.
  • 9. Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T. A review and evaluation of intraurban air pollution exposure models. J Expo Anal Environ Epidemiol, 2005; 15(2): 185-204.
  • 10. Nimis PL, Lazzarin G, Lazzarin A, Skert N. Biomonitoring of trace element with lichens in Veneto. Sci Total Environ, 2000; 255(1-3): 97–111.
  • 11. Cansaran- Duman D, Aras S. Heavy metal accumulation of five biomonitor lichen species in the vicinity of iron-steel plant in Karabük, Turkey and their comparative analysis. Turk Hij Den Biol Derg, 2012; 69(4): 179-92.
  • 12. Cansaran-Duman D, Atakol O, Atasoy İ, Kahya D, Aras S, Beyaztaş T. Heavy metal accumulation in Pseudevernia furfuracea (L.) Zopf from the Karabük Iron-Steel Factory in Karabük, Turkey. Naturforsch C, 2009; 64(9-10): 717-23.
  • 13. Giardano S, Adamo P, Sorbo S, Vingiani S. Atmospheric trace metal pollution in the Naples urban area based on results from moss and lichen bags. Environ Pollut, 2005; 136(3): 431-42.
  • 14. Adamo P, Giordano S, Vingiani S, Castaldo-Cobianchi R, Violante P. Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy). Environ Pollut, 2003; 122(1): 91-103.
  • 15. Conti ME, Cecchetti G. Biological monitoring: lichens as bioindicators of air pollution assessment, a review. Environ Pollut 2001; 114(3): 471-92.
  • 16. Bargagli R. Trace Elements in Terrestrial Plants, An Ecophysiological Approach to Biomonitoring and Biorecovery. Berlin, Springer, 1998.
  • 17. Nimis PL. Linee guida per la bioindicazione degli effetti dell’inquinamento tramite la biodiversita` dei licheni epifiti, Atti Workshop ‘Biomonitoraggio della qualita` dell’aria sul territorio nazionale’, 26– 27 Novembre, Roma. Anpa-Serie Atti 1998; 267–77.
  • 18. Aslan A, Budak G, Karabulut A. The amounts Fe, Ba, Sr, K, Ca and Ti in some lichens growing in Erzurum province (Turkey). J Quan Spec Rad Tran, 2004; 88(4): 423-31.
  • 19. Aslan A, Budak G, Tıraşoğlu E, Karabulut A. Determination of elements in some lichens growing in Giresun and Ordu province (Turkey) using energy dispersive X-ray fluorescence spectrometry. J Quan Spec Rad Trans, 2006; 97(1): 10-9.
  • 20. Aslan A, Çiçek A, Yazıcı K, Karagöz Y, Turan M, Akkuş F,et al. The assessment of lichens as bioindicator of heavy metal pollution from motor vehicles activites. African J Agri Res, 2011;6 (7): 1698-1706.
  • 21. Çiçek A, Koparal AS, Aslan A, Yazıcı K. Accumulation of heavy metals from motor vehicles in transplanted lichens in an urban area. Comm Soil Sci Plant Anal, 2008; 39(1-2): 168–76.
  • 22. Cansaran-Duman D. Study on accumulation ability of two lichen species Hypogymnia physodes and Usnea hirta at Iron-Steel Factory site, Turkey. J Environ Biol, 2011; 32(6): 839-44.
  • 23. Cansaran-Duman D, Aras S. Atakol O, Atasoy I. Accumulation of trace elements and the assessment of the genotoxicity in the lichen Pseudevernia furfuracea transplanted to a polluted site in Ankara. Ekoloji, 2012; 21(85): 1-14.
  • 24. Cansaran-Duman D, Altunkaynak E, Aras S. Heavy metal accumulation and genotoxicity indicator capacity of the lichen species, Ramalina pollinaria collected from around and iron steel factory in Karabük, Turkey. Turk J Bot, 2014 38: 477-90.
  • 25. Xue-Mei Q, Pei-Jun L, Wan L, Li-Jıng X. Multiple biomarkers response in maize (Zea mays L.) during exposure to copper. J Environ Sci, 2006; 18(6): 1182-8.
  • 26. Cenkci S, Yıldız M, Ciğerci İH, Bozdağ A, Terzi H, Terzi ES. Evaluation of 2,4-D and Dicamba genotoxicity in bean seedlings using comet and RAPD assays. Ecotoxicol Environ Saf, 2010; 73(7): 1558-64.
  • 27. Soydam-Aydın S, Gökçe E, Büyük İ, Aras S. Characterization of stress induced by copper and zinc on cucumber (Cucumis sativus L.) seedlings by means of molecular and population parameters. Mutat Res, 2012; 746(1):49-55.
  • 28. Soydam-Aydın S, Başaran E, Cansaran-Duman D, Aras S. Genotoxic effect of cadmium in okra seedlings: comperative inverstigation with population parameters and molecular markers. J Environ Biol, 2013; 34(6): 985-90.
  • 29. Liu W, Yang Y, Zhou Q, Xie L, Li P, Sun T. Impact assessment of cadmium contamination on rice (Oryza sativa L.) seedlings at molecular and population levels using multiple biomarkers. Chemosphere, 2007; 67(6): 1155-63.
  • 30. Körpe DA, Aras S. Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at molecular and population levels by use of various biomarkers. Mutat Res, 2011;719 (1-2): 29-34.
  • 31. Aras S, Kanlıtepe Ç, Cansaran-Duman D, Halıcı MG, Beyaztaş T. Assesment of air pollution genotoxicity by molecular markers in the exposed samples of Pseudevernia furfuracea (L.) Zopf in the province of Kayseri (Central Anatolia). J Environ Monit, 2010;12(2): 536-43.
  • 32. Aras S, Beyaztaş T, Cansaran-Duman D. Evaluation of genotoxicity of Pseudevernia furfuracea (L.) Zopf by RAPD analysis. Genet Mol Res, 2011;10 (4): 3760- 70.
  • 33. Beyaztaş T, Aras S, Cansaran-Duman D. Likenlerde ağır metal birikiminin DNA üzerindeki etkileri. Turk J Sci Rev, 2008; 1(2): 37-43.
  • 34. Cansaran-Duman D, Atakol O, Aras S. Assesment of the air pollution genotoxicity by RAPD in Evernia prunastri L. Ach. From around iron-steel factory in Karabük, Turkey. J Environ Sci Chine. 2011; 23(7): 1171-8.
  • 35. Vardar Ç, Başaran E, Cansaran-Duman D, Aras S. Airquality biomonitoring: assessment of genotoxicity of air pollution in the Province of Kayseri (Central Anatolia) by use of the lichen Pseudevernia furfuracea (L.) Zopf and amplified fragment-length polymorphism markers. Mutat Res Genet Toxicol Environ Mutagen, 2014; 759: 43-50.
  • 36. Schuhmacher M, Nadal M, Domingo JL. Environmental monitoring of PCDD/Fs and metals in the vicinity of a cement plant after using sewage sludge as a secondary fuel. Chemosphere, 2009; 74(11): 1502-8.
  • 37. Hallegraeff GM. A review of harmful algal blooms and their apparent global increase. Phycologia, 1993; 32(2):79-99.
  • 38. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976; 72: 248-54
  • 39. Aras S, Cansaran D. Isolation of DNA for sequence analysis from herbarium material of some lichen specimens. Turk J Bot, 2006; 30: 449-53.
  • 40. Atienzar FA, Conradi M, Evenden AJ, Jha AN, Depledge MH. Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparisonof genomic template stability with key fitness parameters in Daphnia magna exposed to benzo [a] pyrene. Environ Toxicol Chem, 1999; 18(10): 2275–82.
  • 41. Poli P, Buschini A, Restivo FM, Ficarelli A, Cassoni F, Ferrero I, et al. Comet assay application in environmental monitoring: DNA damage in human leukocytes and plant cells in comparison with bacterial and yeast tests. Mutagenesis, 1999; 14(6): 547-56.
  • 42. Tuan TA, Popova LP. Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk J Bot, 2013; 37:1-13
  • 43. Altınözlü H, Karagöz A, Polat T, Ünver İ. Nickel hyperaccumulation by natural plants in Turkish serpentine soils. Turk J Bot, 2012; 36: 269-80.
  • 44. Mohd-Anwar A, Rashmi G, Gupta M. Comparative biochemical and RAPD analysis in two varieties of rice (Oryza sativa) under arsenic stress by using various biomarkers. J Hazard Mat, 2012; 217-218: 141-8.
  • 45. Halliwel B. How to characterize a biological antioxidant. Free Radic Res Commun, 1990; 9(1): 1-32.
  • 46. Waisberg M, Joseph P, Hale B, Beyersmann D. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicol, 2003; 192(2-3): 95-117.
  • 47. Zhao FJ, McGrath SP, Meharg AA. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol, 2010; 61: 535-59.