Tek Katmanlı Hegzagonal Bor Nitrür/Alüminyum Nitrür Süperörgü Nanoşeritlerinin Çeşitli Dizilerinde Termal İletkenlik ve Termal Doğrultma

Bu çalışmada, tek katmanlı h-BN/h-AlN süperörgü nanoşeritlerinin çeşitli geometrileri için termal taşınım özellikleri, denge dışı moleküler dinamik simülasyonları kullanılarak araştırılmıştır. Bu bağlamda, farklı periyot uzunlukları, geometriler, örnek uzunlukları ve sıcaklıklar için süperörgü nanoşeritlerin örgü ısıl iletkenlikleri elde edilmiştir. Sonuçlar, bozulmamış nanoşeritler ile karşılaştırıldığında süperörgü nanoşeritlerin termal iletkenliklerinde bir azalma olduğunu, kafes termal iletkenliklerinin azalan örnek uzunlukları ve artan sıcaklıklar ile azaldığını, ayrıca periyot uzunluklarının değişimi ile süperörgü nanoşeritlerinin termal iletkenliklerinde dalga-benzeri ve parçacık-benzeri fonon taşınımı arasındaki rekabetten kaynaklanan ekstremum noktalarının oluşumunu ortaya koymaktadır. Ayrıca h-BN/h-AlN arayüzünü bağlamak için farklı geometrilere sahip süperörgü nanoşeritler yaratılmıştır ve ters yönlerde hesaplanan termal iletkenlikler arasında fark olduğu gözlemlenmektedir. Bu fark, süperörgü yapılarında termal doğrultmaya sebep olmaktadır. Özellikle düşük sıcaklıklarda termal banyo alanları arasındaki asimetri arttıkça termal doğrultma oranının arttığı tespit edilmiştir.

Thermal Conductivity and Thermal Rectification in Various Sequences of Monolayer Hexagonal Boron Nitride/Aluminum Nitride Superlattice Nanoribbons

In this study, the thermal transport properties for various geometries of monolayer h-BN/h-AlN superlattice nanoribbons are investigated using non-equilibrium molecular dynamics simulations. In this context, the lattice thermal conductivities of the superlattice nanoribbons are obtained for different period lengths, geometries, sample lengths, and temperatures. Results reveal that a decrease in the thermal conductivities of superlattice nanoribbons when compared with those of the pristine nanoribbons, the lattice thermal conductivities decrease with decreasing sample lengths and increasing temperatures, also the formation of the extremum points resulting from the competition between wave-like and particle-like phonon transport in the thermal conductivity of superlattice nanoribbons with the change of the period lengths. Moreover, superlattice nanoribbons with different geometries are created to connect the h-BN/h-AlN interface, and it is observed that there is a difference between the thermal conductivities calculated in the reverse directions. This difference leads to thermal rectification in the superlattice structures. As the asymmetry between thermal contact areas increases especially at low temperatures, it is found out the thermal rectification ratio increases.

___

  • Referans1 Taniyasu Y, Kasu M, Makimoto T. An aluminium nitride light-emitting diode with a wavelength 210 nanometers. Nature. 2006;441(7091):325-8.
  • Referans2 Mokkapati S, Jagadish C. III-V compound SC for optoelectronic devices. Materials Today. 2009;12(4):22-32.
  • Referans3 Lu N, Ferguson I. III-nitrides for energy production: photovoltaic and thermoelectric applications. Semiconductor Science and Technology. 2013;28(7):074023.
  • Referans4 Li X, Liu X. Group III nitride nanomaterials for biosensing. Nanoscale. 2017;9(22):7320-41.
  • Referans5 Ambacher O. Growth and applications of group III-nitrides. Journal of Physics D: Applied physics. 1998;31(20):2653.
  • Referans6 Lu H, Guo Y, Robertson J. Chemical trends of Schottky barrier behavior on monolayer hexagonal B, Al, and Ga nitrides. Journal of Applied Physics. 2016;120(6):065302.
  • Referans7 Huang Z, Lü TY, Wang HQ, Yang SW, Zheng JC. Electronic and thermoelectric properties of the group-III nitrides (BN, AlN and GaN) atomic sheets under biaxial strains. Computational Materials Science. 2017;130:232-41.
  • Referans8 Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Letters. 2010;10(8):3209-15.
  • Referans9 Cheng TS, Summerfield A, Mellor CJ, Khlobystov AN, Eaves L, Foxon CT, et al. High-temperature molecular beam epitaxy of hexagonal boron nitride with high active nitrogen fluxes. Materials. 2018;11(7):1119.
  • Referans10 Tsipas P, Kassavetis S, Tsoutsou D, Xenogiannopoulou E, Golias E, Giamini S, et al. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag (111). Applied Physics Letters. 2013;103(25):251605.
  • Referans11 Mansurov V, Malin T, Galitsyn Y, Zhuravlev K. Graphene-like AlN layer formation on (111) Si surface by ammonia molecular beam epitaxy. Journal of Crystal Growth. 2015;428:93-7.
  • Referans12 Zeng H, Zhi C, Zhang Z, Wei X, Wang X, Guo W, et al. “White graphenes”: boron nitride nanoribbons via boron nitride nanotube unwrap ping. Nano Letters. 2010;10(12):5049-55.
  • Referans13 Barone V, Peralta JE. Magnetic boron nitride nanoribbons with tunable electronic properties. Nano Letters. 2008;8(8):2210-4.
  • Referans14 Tabarraei A. Thermal conductivity of monolayer hexagonal boron nitride nanoribbons. Computational Materials Science. 2015;108:66-71.
  • Referans15 Tian Z, Lee S, Chen G. Heat transfer in thermoelectric materials and devices. Journal of Heat Transfer. 2013;135(6).
  • Referans16 Ouyang Y, Zhang Z, Li D, Chen J, Zhang G. Emerging theory, materials, and screening methods: new opportunities for promoting thermoelectric performance. Annalen der Physik. 2019;531(4):1800437.
  • Referans17 Feng CP, Wan SS, Wu WC, Bai L, Bao RY, Liu ZY, et al. Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage. Composites Science and Technology. 2018;167:456-62.
  • Referans18 Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N, Zhang G. Size-dependent phononic thermal transport in low-dimensional nanomaterials. Physics Reports. 2020.
  • Referans19 Li N, Ren J, Wang L, Zhang G, Hänggi P, Li B. Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond. Reviews of Modern Physics. 2012;84(3):1045.
  • Referans20 Tien C, Chen G. Challenges in microscale conductive and radiative heat transfer. Previews of Heat and Mass Transfer. 1995;2(21):97.
  • Referans21 Yao T. Thermal properties of AlAs/GaAs superlattices. Applied Physics Letters. 1987;51(22):1798-800.
  • Referans22 Ravichandran J, Yadav AK, Cheaito R, Rossen PB, Soukiassian A, Suresha S, et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nature materials. 2014;13(2):168-72.
  • Referans23 Cheaito R, Polanco CA, Addamane S, Zhang J, Ghosh AW, Balakrishnan G, et al. Interplay between total thickness and period thickness in the phonon thermal conductivity of superlattices from the nanoscale to the microscale: Coherent versus incoherent phonon transport. Physical Review B. 2018 Feb;97:085306.
  • Referans24 Juntunen T, Vänskä O, Tittonen I. Anderson localization quenches thermal transport in aperiodic superlattices. Physical Review Letters. 2019;122(10):105901.
  • Referans25 Latour B, Volz S, Chalopin Y. Microscopic de scription of thermal-phonon coherence: From coherent transport to diffuse interface scattering in superlattices. Physical Review B. 2014 Jul;90:014307.
  • Referans26 Chowdhury PR, Reynolds C, Garrett A, Feng T, Adiga SP, Ruan X. Machine learning maximized Anderson localization of phonons in aperiodic superlattices. Nano Energy. 2020;69:104428.
  • Referans27 Wang X, Wang M, Hong Y, Wang Z, Zhang J. Coherent and incoherent phonon transport in a graphene and nitrogenated holey graphene superlattice. Physical Chemistry Chemical Physics. 2017;19(35):24240-8.
  • Referans28 Zhu T, Ertekin E. Phonon transport on two- dimensional graphene/boron nitride superlattices. Physical Review B. 2014;90(19):195209.
  • Referans29 Chen XK, Xie ZX, Zhou WX, Tang LM, Chen KQ. Phonon wave interference in graphene and boron nitride superlattice. Applied Physics Letters. 2016;109(2):023101.
  • Referans30 Felix IM, Pereira LFC. Suppression of coherent thermal transport in quasiperiodic graphene-hBN superlattice ribbons. Carbon. 2020;160:335-41.
  • Referans31 Chen XK, Xie ZX, Zhang Y, Deng YX, Zou TH, Liu J, et al. Highly efficient thermal rectification in carbon/boron nitride heteronanotubes. Carbon. 2019;148:532-9.
  • Referans32 Pei QX, Zhang YW, Sha ZD, Shenoy VB. Carbon isotope doping induced interfacial thermal resistance and thermal rectification in graphene. Applied Physics Letters. 2012;100(10):101901.
  • Referans33 Song C, Li S, Bao H, Ju J. Design of thermal diodes using asymmetric thermal deformation of a Kirigami structure. Materials & Design. 2020:108734.
  • Referans34 Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H, Chen J. Experimental study of thermal rectification in suspended monolayer graphene. Nature Communications. 2017;8(1):1-8.
  • Referans35 Jiang P, Hu S, Ouyang Y, Ren W, Yu C, Zhang Z, et al. Remarkable thermal rectification in pristine and symmetric monolayer graphene enabled by asymmetric thermal contact. Journal of Applied Physics. 2020;127(23):235101.
  • Referans36 Lu J, Zheng Z, Yao J, Gao W, Xiao Y, Zhang M, et al. An asymmetric contact-induced self-powered 2D In2S3 photodetector towards high-sensitivity and fast-response. Nanoscale. 2020;12(13):7196-205.
  • Referans37 Chang CW, Okawa D, Majumdar A, Zettl A. Solid-state thermal rectifier. Science. 2006;314(5802):1121-4.
  • Referans38 Duan Z, Liu D, Zhang G, Li Q, Liu C, Fan S. Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems. Nanoscale. 2017;9(9):3133-9.
  • Referans39 Wang Y, Vallabhaneni A, Hu J, Qiu B, Chen YP, Ruan X. Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Nano Letters. 2014;14(2):592-6.
  • Referans40 Zarghami Dehaghani M, Molaei F, Spitas C, Hamed Mashhadzadeh A. Thermal rectification in nozzle-like graphene/boron nitride nanoribbons: A molecular dynamics simulation. Computational Materials Science. 2022;207:111320.
  • Referans41 Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Computational Physics. 1995;117(1):1 19.
  • Referans42 LAMMPS;. http://lammps.sandia.gov.
  • Referans43 Karaaslan Y, Yapicioglu H, Sevik C. Assessment of the thermal transport properties of group- III nitrides: A classical molecular dynamics study with transferable Tersoff-type inter-atomic potentials. Physical Review Applied. 2020 Mar;13:034027.
  • Referans44 Karaaslan Y. Coherent and incoherent phonon thermal transport in group-III nitride monolayer superlattices with Tersoff type interatomic potential. Physica E: Low-dimensional Systems and Nanostructures. 2022;140:115176.
  • Referans45 Müller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. The Journal of Chemical Physics. 1997;106(14):6082-5.
  • Referans46 Li Z, Xiong S, Sievers C, Hu Y, Fan Z, Wei N, et al. Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids. The Journal of Chemical Physics. 2019;151(23):234105.
  • Referans47 Schelling PK, Phillpot SR, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity. Physical Review B. 2002 Apr;65:144306.
  • Referans48 Chen P, Zhang Z, Duan X, Duan X. Chemical synthesis of two dimensional atomic crystals, heterostructures and superlattices. Chemical Society Reviews. 2018;47(9):3129-51.
  • Referans49 Saha B, Koh YR, Comparan J, Sadasivam S, Schroeder JL, Garbrecht M, et al. Cross-plane thermal conductivity of (Ti,W)N/(Al,Sc)N metal/semiconductor superlattices. Physical Review B. 2016 Jan;93:045311.