Nano-Y2O3 Katkılı Bizmut Esaslı Süperiletken Malzemelerin Manyetik ve Mekanik Özelliklerinin İncelenmesi

Bu çalışmada nano-Y2O3 ilavesinin Bi-2223 süperiletken sisteminin yapısal, süperiletken, manyetik ve mekanik özellikleri üzerindeki etkileri araştırılmıştır. Bi1.8Pb0.4Sr2Ca 2Cu3O10 + δ + (Y2O3) ile ( x; ağırlıkça % 0,0-0,2-0,4-0,8-1,0) genel formülüne sahip polikristal örnekler katıhal reaksiyon yöntemiyle hazırlandı. Örneklerin yapısal karakterizasyonları için X-ışını kırınımı (XRD), Taramalı Elektron mikroskobu (SEM), Enerji dağılımlı X-ışını spektroskopisi (EDX) ölçümü, Titreşimli numune ölçümü (VSM), Direnç-sıcaklık (ρ-T) ölçümü ve Vickers mikrosertlik ölçümü (VHM) yapılmıştır. XRD desenleri, örneklerde hem Bi -2223 hem de Bi2212 fazlarının bir arada bulunduğunu gösterdi. Nano-Y ilavesinin artmasıyla a örgü parametresi artarken, c örgü parametresi azalmıştır. SEM fotoğraflarında tüm örneklerde tanecik yapısının plaka benzeri olduğu görülmekte ve katkı miktarındaki artmasıyla tabakalı yapı üzerinde nokta şeklinde partiküllerin varlığı daha net görülmektedir. ρ-T ölçümünden hesaplanan delik konsantrasyonu değerleri 0,113 ile 0,160 arasında değişmektedir. Nano-Y miktarı artarken kritik geçiş sıcaklıkları azalmıştır. VSM sonuçları Nano-Y eklenmesiyle kritik akım yoğunluğu değerlerinin arttığını göstermektedir. VHM sonuçları, sertlik değerinin x= % 0,4 katkılı örneğe kadar arttığını ve bu değerden sonra azaldığını göstermiştir.

Investigation of the Magnetic and Mechanical Properties of Nano-Y2O3 Doped Bismuth Based Superconductor Materials

The effects of nano-Y2O3 addition on the structural, superconducting, magnetic and mechanical properties of Bi-2223 superconducting system were investigated in this study. Bulk polycrystalline samples with general formula of Bi1.8Pb0.4Sr2Ca 2Cu3O10 + δ + (Y2O3) with ( x; weighted % 0.0-0.2-0.4-0.8-1.0) were prepared by solid state reaction method. X-ray diffraction (XRD), Scanning Electron microscope (SEM), Energy dispersive X-ray spectroscopy (EDX) mesurement, Vibrating sample mesurement (VSM), Resistance- temperature (ρ-T) mesurement and Vickers microhardness mesurement (VHM) were also used for samples structural characterizations. XRD patterns showed that both Bi -2223 and Bi-2212 phases are coexist in the samples. While a lattice parameter increased, c lattice parameter decreased with increasing of nano-Y addition. In SEM photographs, it is seen that granular structure is plate-like in all samples and increase in the amount of additive, presence of point particles on the layered particles is seen more clearly. Hole concentration values that calculated from ρ-T mesurement, ranges from 0.113 to 0.160. While amount of nano-Y increased, critical transition temperatures decreased. VSM results showed that critical current density values increase with the addition of Nano-Y. VHM results showed that the hardness value increased until x= 0.4% additive sample and decreased after this value.

___

  • Kim CJ. Superconductor Levitation Concepts and Experiments (e Book). Springer Nature; 2019. https://doi.org/10.1007/978-981-13-6768-7
  • Abou-Aly A, Abdel Gawad MMH, Awad R, G-Eldeen I. Improving the Physical Properties of (Bi, Pb)-2223 Phase by SnO2 Nano-particles Addition. J. Supercond. Nov. Magn.2011; 24, (7): 2077-84.
  • Awad R. Study of the Influence of MgO Nano-Oxide Addition on the Electrical and Mechanical Properties of (Cu0.25Tl0.75)-1234 Superconducting Phase. J Supercond. Nov. Magn. 2008; 21: 461–6
  • Öztornacı U, Özkurt B. The effect of nano-sized metallic Au addition on structural and magnetic properties of Bi1.8Sr2 AuxCa1.1Cu2.1Oy (Bi-2212) ceramics. Ceram. İnter. 2017; 43 (5): 4545-50.
  • Mawassi R, Marhaba S, Roumié M Awad R, Korek M, Hassan I. Improvement of Superconducting Parameters of Bi 1.8Pb0.4Sr2Ca2Cu3O10+δ Added with Nano-Ag. J. Supercond. Nov. Magn. 2014; 27:1131–42.
  • Yahya NAA, Al-Gaashani R, Abd-Shukor R. Synthesis and characterization of PbO–CdO nanocomposite and its effect on (Bi,Pb)-2223 superconductor. Appl. Phys. A. 2017;123-68.
  • Jia ZY, Tang H, Yang ZQ, Xing YT, Wang YZ, Qiao GW. Effects of nano-ZrO particles on the superconductivity of Pb-doped BSCCO. Phys. C. 2000; 337:130–2.
  • Yıldırım G, Dogruer M, Karaboga F, Terzioglu C. Formation of nucleation centers for vortices in Bi-2223 superconducting core by dispersed Sn nanoparticles. J. All. Comp. 2014; 584: 344-51.
  • Mohammed LA, Jasim KA. The substitutions of Strontium by yttrium and their effects on Bi2Sr2-xYxCa2Cu3O10+δ superconducting compound. Journal of Physics: Conference Series. 2021. 1879 (032069)
  • Dong Y, Sun A, Xu B, Zhang H, Zhang M. Effect of the BSCCO superconducting properties by tiny Y2O3 addition. Mod. Phys. Let. B. 2016; 30 (26): 1650328/1-9.
  • Khalil SM. Effect of Y3+ substitution for Ca on the transport and mechanical properties of Bi2Sr2Ca1−xYxCu2O8+δ system. J. Phys. Chem. Sol. 2003; 64 (5): 855-61.
  • Sedky A. The impact of Y substitution on the 110 K high Tc phase in Bi (Pb):2223 superconductor. J. Phys. Chem. Sol. 2009;70: 483-88.
  • Suazlina MA, Yusainee SYS, Azhan H, Abd-Shukor R, Mustaqim R. The Effects of Nanoparticle Addition in Bi-2212 Superconductors. 2014; 69 (2): 49–52.
  • Oboudi SF. Synthesis and Magnetic Properties of Bi1.7Pb 0.3Sr2Ca2Cu3O10+δ Added with Nano Y. J. Supercond. Nov. Magn. 2017; 30: 1473–82.
  • Durmus H, Kocabas K. The influence of Mn nanoparticles on superconducting properties and pinning mechanism of MgB2. J. Mater. Sci. Mater. Electr. 33 (21): 17079–89.
  • Çorduk T, Bilgili O, Kemal K. Investigation of effects of MgO nanoparticles addition on the superconducting properties of Bi-2223 superconductors. J. Mater. Sci. Mater. Electr. 2017; 28 (11): 14689–95.
  • Cevizci B, Bilgili O, Kemal K. The influence of Ag substitution on structural and mechanical properties of (Bi, Pb)-2223 ceramics. J.Mater. Sci. Mater. Elect. 2016; 27 (12), 13171-78.
  • Bilgili O, Yurdaskal M. Effects of Graphene Oxide Doping on Magnetic and Structural Properties of Bi1.6Pb0.4Sr2Ca2Cu3Oy Superconductor. J.Elect. Mat.2021; 50: 4999–5006.
  • Yildirim G, Dogruer M, Karaboga F, Terzioglu C. Formation of nucleation centers for vortices in Bi-2223 superconducting core by dispersed Sn nanoparticles. J. All. Comp.2014; 584: 344–51.
  • Bilgili O. Structural and Electrical Properties of Nanosized Sm2O3 Doped Bi1.6Pb0.4Sr2Ca2Cu3Oy Superconductors .J. Low. Temp. Phys.2021; 204: 5-6.
  • Shamray VF, Mikhailova AB, Mitin AV. Crystal structure and superconductivity of Bi-2223. Cryst Rep.2009; 54: 584–590.
  • Scherrer P. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mat. Phys. Klas. 1918; 2: 98-100.
  • Langford J I, Wilson A J C Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. J. Appl. Cryst.1978; 11: 102-113.
  • Abou-Aly A I, Abdel Gawad M M H, Awad R, G-Eldeen I. Improving the Physical Properties of (Bi, Pb)-2223 Phase by SnO2 Nano-particles Addition. J. Supercond. Nov. Magn. 2011; 24: 2077–84.
  • Bean CP. Magnetization Of Hard Superconductors. Phys. Rev. Lett. 1962; 8 (6): 250-3.
  • Yahya NAA, Abd-Shukor R. Effect of Different Nanosized MgO on the Transport Critical Current Density of Bi1.6Pb0.4Sr2Ca2Cu3O10 Superconductor. J. Supercond. Nov. Magn. 2014; 27: 329-35.
  • Turk N, Gundogmus H, Akyol M, Yakıncı D, Ekicibil A, Ozcelik B. Effect of Tungsten (W) Substitution on the Physical Properties of Bi-(2223) Superconductors. J. Supercond. Nov. Magn. 2014; 27: 711–16.
  • Persland M R, Tallon J L, Buckley R G, Liu R S, Floer N E. General trends in oxygen stoichiometry effects on Tc in Bi and Tl superconductors. Phys. C. 1191; 176 (1–3): 95–105.
  • Bilgili O, Selamet Y, Kocabas K. Effects of Li Substitution in Bi-2223 Superconductors. J. Supercond. Nov. Magn. 2008; 21: 439–49.
  • Saritekin N K, Tutuncu A T. Improving Superconductivity, Microstructure, and Mechanical Properties by Substituting Different Ionic Pb Elements to Bi and Ca Elements in Bi 2223 Superconductors. J. Supercond. Nov. Magn. 2022; 35: 2259–73.
  • Uvarov V, Popov I. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charac.2013; 85: 111-123.
  • Safran S, Ozturk H, Bulut F, Ozturk O. The influence of re-pelletization and heat treatment on physical, superconducting, magnetic and micro-mechanical properties of bulk BSCCO samples prepared by ammonium nitrate precipitation method. Ceram. Inter. 2017; 43: 15586–92.
  • Li H, Bradt R C. The effect of indentation-induced cracking on the apparent microhardness. J.Mat. Sci. 1966; 31: 1065-70.
  • Ozturk O, Asikuzun E, Tasci A T, Gokcen T, Ada H, Koralay H, Cavdar S. Comparison of Vickers microhardness of undoped and Ru doped BSCCO glass ceramic materials. J.Mater. Sci. Mater. Elect. 2018; 29: 3957–66.
  • Jones DRH, Ashby MF. Engineering Materials 1: An Introduction to Properties, Applications and Design. Chapter 3 - The Elastic Moduli. 5 th ed. Elsevier Science press; 2019. p.29-53.
  • Jones DRH, Ashby MF. Engineering Materials 1: An Introduction to Properties, Applications and Design. Chapter 8 - Yield Strength, Tensile Strength, and Ductility. 5 th ed. Elsevier Science press; 2019. p.115-133.
Türk Doğa ve Fen Dergisi-Cover
  • ISSN: 2149-6366
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bingöl Üniversitesi Fen Bilimleri Enstitüsü