n-Si / GaN ince filmlerin fiziksel özellikleri: farklı N oranı etkisi

GaN ince filmi, Radyo Frekansı magnetron saçtırma yöntemi ile n-tipi Si üzerinde farklı N oranları uygulanarak üretildi. XRD analizleri üretilen filmin polikristal yapıda olduğunu (oryantasyon (110) ve (100)) teyit etmiştir. Farklı N oranlarında malzemenin yapısal parametrelerinin değiştiği görülmektedir. Optik analiz, çeşitli N oranlarının Azot boşluğunun azalması nedeniyle ince film optik bant boşluk enerjisini değiştirdiğini göstermektedir. AFM resimleri, GaN ince filminin Nano yapılı bir yüzeye sahip olduğunu ve periyodik tanecik yapısı gösterdiğini neredeyse homojen olan yapıyı göstermiştir. SEM resimlerinden GaN ince filminin yüzeyinde topaklar tespit ettik. Bunların olası nedenleri detaylı tartışıldı. Raman sonuçları, altıgen GaN'nin karşılık gelen karakteristik E2 (yüksek) optic fonon titreşimini kanıtlamıştır ve tüm ince filmlerin sıkıştırma gerginliğine sahip olduğunu göstermiştir. Filmde oluşan bu stresin nedenleri tartışıldı. GaN ince filmin optik, morfolojik, yapısal parametreleri N oranlarının kontrol edilmesiyle iyileştirilebildiği bulunmuştur. Üretilen ince filmler, güneş pilleri, Işık Yayan Diyot (LED) gibi cihaz uygulamalarında temel malzeme olabilmektedir.

Physical characteristics of n-Si/GaN thin films: effect of different N rates

The GaN thin film was fabricated on n-type Si by a Radio Frequency magnetronsputtering method with applied various nitrogen (N) rates. The XRD confirmed the produced filmhad in a polycrystalline structure (orientations (110) and (100)). It was seen that different N ratesvaried structural parameters of fabricated material. The optical analysis showed that various N rateschanged thin film optical-band gap energy by reason of reduced N vacancy. The AFM picturesdemonstrated almost homogeneous with periodic grain arrangements, Nano-structured surface ofGaN thin film. From SEM pictures, we detected agglomerations on the surface of the GaN thin film.Possible causes of them were deeply discussed. Raman results proved the correspondingcharacteristic E2(high) peak of the hexagonal GaN and exhibited that all thin films had tensilestress. Reasons of this stress were discussed. Optical, morphological, structural parameters of ???thin film can be improved with controlling N rates. Produced thin films can be basic material indevice applications such as solar cells, Light Emitting Diode (LED).

___

  • [1] Hu X-l, Wen R-l, Qi Z-y, Wang H. III-nitride ultraviolet, blue and green LEDs with SiO2 photonic crystals fabricated by UV-nanoimprint lithography. Materials Science in Semiconductor Processing. 2018;79:61-5. doi: 10.1016/j.mssp.2018.01.024.
  • [2] Mohanty G, Sahoo BK. Effect of III-V nitrides on performance of graphene based SPR biosensor for detection of hemoglobin in human blood sample: A comparative analysis. Current Applied Physics. 2016;16(12):1607-13. doi: 10.1016/j.cap.2016.09.006.
  • [3] Moon WH, Kim HJ, Choi CH. Molecular dynamics simulation of melting behavior of GaN nanowires. Scripta Materialia. 2007;56(5):345-8. doi: 10.1016/j.scriptamat.2006.11.013.
  • [4] He XG, Zhao DG, Jiang DS, Zhu JJ, Chen P, Liu ZS, et al. GaN high electron mobility transistors with AlInN back barriers. Journal of Alloys and Compounds. 2016;662:16-9. doi: 10.1016/j.jallcom.2015.12.031.
  • [5] Saito W, Suwa T, Uchihara T, Naka T, Kobayashi T. Breakdown behaviour of high-voltage GaN-HEMTs. Microelectronics Reliability. 2015;55(9):1682-6. doi: 10.1016/j.microrel.2015.06.126.
  • [6] Miyoshi M, Tsutsumi T, Kabata T, Mori T, Egawa T. Effect of well layer thickness on quantum and energy conversion efficiencies for InGaN/GaN multiple quantum well solar cells. Solid-State Electronics. 2017;129:29-34. doi: 10.1016/j.sse.2016.12.009.
  • [7] Sheu J-K, Chen P-C, Shin C-L, Lee M-L, Liao P-H, Lai W-C. Manganese-doped AlGaN/GaN heterojunction solar cells with intermediate band absorption. Solar Energy Materials and Solar Cells. 2016;157:727-32. doi: 10.1016/j.solmat.2016.07.047.
  • [8] Dong Y, Son D-h, Dai Q, Lee J-H, Won C-H, Kim J-G, et al. AlGaN/GaN heterostructure pH sensor with multi-sensing segments. Sensors and Actuators B: Chemical. 2018;260:134-9. doi: 10.1016/j.snb.2017.12.188.
  • [9] Liu Z, Chong WC, Wong KM, Lau KM. GaN-based LED micro-displays for wearable applications. Microelectronic Engineering. 2015;148:98-103. doi: 10.1016/j.mee.2015.09.007.
  • [10] Lin J-H, Huang S-J, Su Y-K, Huang K-W. The improvement of GaN-based LED grown on concave nano-pattern sapphire substrate with SiO2 blocking layer. Applied Surface Science. 2015;354:168-72. doi: 10.1016/j.apsusc.2015.02.151.
  • [11] Abud SH, Selman AM, Hassan Z. Investigation of structural and optical properties of GaN on flat and porous silicon. Superlattices and Microstructures. 2016;97:586-90. doi: 10.1016/j.spmi.2016.07.017.
  • [12] Schulz H, Thiemann KH. Crystal structure refinement of AlN and GaN. Solid State Communications. 1977;23(11):815-9. doi: 10.1016/0038-1098(77)90959-0.
  • [13] Yeh C-Y, Lu ZW, Froyen S, Zunger A. Zinc-blendechar21{}wurtzite polytypism in semiconductors. Physical Review B. 1992;46(16):10086-97. doi: 10.1103/PhysRevB.46.10086.
  • [14] Miyoshi M, Tsutsumi T, Kabata T, Mori T, Egawa T. Effect of well layer thickness on quantum and energy conversion efficiencies for InGaN/GaN multiple quantum well solar cells. Solid-State Electronics. 2017;129:29-34. doi: 10.1016/j.sse.2016.12.009.
  • [15] Kudrawiec R, Nyk M, Syperek M, Podhorodecki A, Misiewicz J, Strek W. Photoluminescence from GaN nanopowder: The size effect associated with the surface-to-volume ratio. Applied Physics Letters. 2006;88(18):181916. doi: 10.1063/1.2199489.
  • [16] Li J, Liu H, Wu L. The optical properties of GaN (001)surface modified by intrinsic defects from density functional theory calculation. Optik - International Journal for Light and Electron Optics. 2018;154:378-82. doi: 10.1016/j.ijleo.2017.10.040.
  • [17] Said A, Debbichi M, Said M. Theoretical study of electronic and optical properties of BN, GaN and B x Ga 1− x N in zinc blende and wurtzite structures. Optik-International Journal for Light and Electron Optics. 2016;127(20):9212-21. doi: 10.1016/j.ijleo.2016.06.103.
  • [18] Harima H. Properties of GaN and related compounds studied by means of Raman scattering. Journal of Physics: Condensed Matter. 2002;14(38):R967. doi: 10.1088/0953-8984/14/38/201.
  • [19] Sekine T, Komatsu Y, Iwaya R, Kuroe H, Kikuchi A, Kishino K. Surface Phonons Studied by Raman Scattering in GaN Nanostructures. Journal of the Physical Society of Japan. 2017;86(7):074602. doi: 10.7566/JPSJ.86.074602.
  • [20] Nootz G, Schulte A, Chernyak L, Osinsky A, Jasinski J, Benamara M, et al. Correlations between spatially resolved Raman shifts and dislocation density in GaN films. Applied Physics Letters. 2002;80(8):1355-7. doi: 10.1063/1.1449523.
Türk Doğa ve Fen Dergisi-Cover
  • ISSN: 2149-6366
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bingöl Üniversitesi Fen Bilimleri Enstitüsü